
Likelihoods
History of the course:
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1 Likelihood Construction and Estimation

Why do Statisticians love likelihood-based estimation?

1. 

2. 

3. 

4. 

Downsides?

1. 

2. 
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1.1 Introduction

Definition: Suppose random variables  has joint density or probability
mass function  where . Then the likelihood function is

Key concept: In all situations, the likelihood is the joint density of the observed data to be
analyzed.

Y = (Y1, …Yn)⊤

fY (y, θ) θ = (θ1, … , θb)

L(θ|Y ) = fY (Y , θ).
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1.1.1 Notation

Given , note that .

Generally, we optimize .

How?

y L(θ|y) : Rb → R

ℓ(θ) = logL(θ|y)
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Example: Suppose we have . The likelihood function is defined asY1, …Yn
iid
∼ Exp(λ)

# likelihood simulation
n <- 10
lambda <- 1

# plot of exponential(lambda) density
data.frame(x = seq(0, 8, .01)) |>
  mutate(f = dexp(x, rate = lambda)) |>
  ggplot() +
  geom_line(aes(x, f))
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# define likelihood
loglik <- function(lambda, data)
{
    lik <- prod(dexp(data, rate = lambda))
    loglik <- sum(dexp(data, rate = lambda, log = T))
    
    out <- data.frame(lik = lik, loglik = loglik)
    return(out)
}   

# simulate data
data <- rexp(n = n, rate = lambda)

# plot likelihood and loglikelihood
data.frame(lambda = seq(0, 3, by = .01)) |>
  rowwise() |>
  mutate(loglik = loglik(lambda, data)) |>
  unnest(cols = c(loglik)) |>
  pivot_longer(-lambda, names_to = "func", values_to = "vals") |>
  ggplot() +
  geom_vline(aes(xintercept = 1 / mean(data)), lty = 2) + # max 

likelihood estimate is 1/mean
  geom_line(aes(lambda, vals)) +
  facet_wrap(~func, scales = "free")
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The likelihood function is random!

Your Turn: What is the effect of sample size on the log-likelihood function? Make a plot
showing the log-likelihood function that results from  vs.   with
corresponding MLE.

for(i in seq_len(3)) {
  # simulate data
  data <- rexp(n = n, rate = lambda)
  
  # plot likelihood and loglikelihood
  data.frame(lambda = seq(0, 3, by = .01)) |>
    rowwise() |>
    mutate(loglik = loglik(lambda, data)) |>
    unnest(cols = c(loglik)) |>
    ggplot() +
    geom_vline(aes(xintercept = 1 / mean(data)), lty = 2) + # max 

likelihood estimate is 1/mean
    geom_line(aes(lambda, loglik)) +
    theme(text = element_text(size = 20)) -> p ## make legible in 

notes
  
    print(p)
}

n = 10 n = 100
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1.2 Construction

The use of the likelihood function in parameter estimation is easiest to understand in the
case of discrete iid random variables.

1.2.1 Discrete IID Random Variables

Suppose each of the  random variables in the sample  have probability mass
function . The likelihood is then defined as:

In other words,

n Y1, … ,Yn
f(y; θ) = Pθ(Y1 = y), y = y1, y2, …

L(θ|Y ) =  joint density of observed random variables
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Example (Fetal Lamb Movements): Data on counts of movements in five-second intervals
of one fetal lamb (  intervals:)

No. of Movements 0 1 2 3 4 5 6 7
Count 182 41 12 2 2 0 0 1

Assume a Poisson model: . Then the likelihood is

Equating the derivative of the loglikelihood with respect to  to zero and solving results in
the MLE

This is the best we can do with this model. But is it good?

n = 240

P(Y = y) = fY (y;λ) =
exp(−λ)λy

y!

λ

λ̂MLE =
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1.2.2 Multinomial Likelihoods

The multinomial distribution is a generalization of the binomial distribution where instead
of 2 outcomes (success or failure), there are now  outcomes.

The probability mass function is

For  the number of balls in  urn,

The maximum likelihood estimator of :

More interesting multinomial likelihoods arise when the  are modeled as a function of a
lesser number of parameters , .

k ≥ 2

N1, … ,Nk,Ni = ith

pi

pi
θ1, … , θm m < k − 1
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Example (Capture-Recapture): To estimate fish survival during a specific length of time
(e.g., one month), a common approach is to use a removal design.
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1.2.3 Continuous IID Random Variables

Recall: the likelihood is the joint density of data to be analyzed.

Example (Hurricane Data): For  hurricanes that had moved far inland on the East Coast
of the US in 1900-1969, maximum 24-hour precipitation levels during the time they were
over mountains.

We model the precipitation levels with a gamma distribution, which has density

This leads to the likelihood

Of course, this cannot be interpreted as a probability because

36

f(y;α,β) = yα−1 exp(−y/β), y > 0,α,β > 0.
1

Γ(α)βα
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To get a probability, need to go from a density to a measure.

But it may be useful to think of the value of the likelihood as being proportional to a
probability.

More formally, begin with the definition of a derivative

Let  be the cumulative distribution function of a continuous random variable , then (if
the derivative exists)

If we substitute this definition of a density into the definition of the likelihood

g′(x) = lim
h→0+

.
g(x + h) − g(x − h)

2h

F Y

f(y) = lim
h→0+

=
F(x + h) − F(x − h)

2h



14 1 Likelihood Construction and E…

Compare this to the iid discrete case:
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Example (Hurricane Data, Cont’d): Recall with a gamma model, the likelihood for this
example is

and log-likelihood

## [1] 2.187214 3.331862

L(θ|Y ) = {Γ(α)}−nβ−nα{∏Yi}
α−1

exp(−∑ yi/β),

ℓ(θ) =

## loglikelihood function
neg_gamma_loglik <- function(theta, data) {
  -sum(log(dgamma(data, theta[1], scale = theta[2])))
}

## maximize
mle <- nlm(neg_gamma_loglik, c(1.59, 4.458), data = hurr_rain)
mle$estimate

## Gamma QQ plot
data.frame(theoretical = qgamma(ppoints(hurr_rain), mle$estimate[1], 

scale = mle$estimate[2]),
           actual = sort(hurr_rain)) |>
  ggplot() +
  geom_abline(aes(intercept = 0, slope = 1), colour = "grey") +
  geom_point(aes(theoretical, actual)) +
  xlab("Gamma percentiles") + ylab("Ordered values")
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1.2.4 Mixtures of Discrete and Continuous RVs

Some data  often have a number of zeros and the amounts greater than zero are best
modeled by a continuous distribution.

Ex:

In other words, they have positive probability of taking a value of exactly zero, but
continuous distribution otherwise.

A sensible model would assume  are iid with cdf

where  is  and  is a distribution function for a continuous
positive random variable.

Another way to write this:

How to go from here to get a likelihood?

Y

Yi

FY (y; p, θ) =
⎧
⎨⎩

0 y = 0
p y = 0
p + (1 − p)FT (y; θ) y > 0

0 < p ≤ 1 P(Y = 0) FT (y; θ)
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One approach: let  be the number of zeroes in the data and  be the number
of non-zero . This leads to an intuitive way to contruct the likelihood for iid 
distributed according to the above distribution:

Feels a little arbitrary in how we are defining different weights on our likelihood for
discrete and continuous parts.

Turns out, it doesn’t matter! (Need some STAT 630/720 to see why.)

n0 m = n − n0

Yi Y1, … ,Yn

L(θ|Y ) = lim
h→0+

( )
m n

∏
i=1

{FY (Yi + h; p, θ) − FY (Yi − h; p, θ)}
1

2h
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Definition (Absolute Continuity) On , a finitely additive set function  is absolutely
continuous with respect to a measure  if  for each  with . We
also say  is dominated by  and write . If  and  are measures such that 
and  then  and  are equivalent.

Theorem (Lebesgue-Randon-Nikodym) Assume that  is a -finite countably additive set
function and  is a -finite measure. There exist unique -finite countably additive set
functions  and  such that ,  and  are mutually singular and
there exists a measurable extended real valued function  such that

If  is another such function, then  a.e. wrt . If  then  for all
.

Definition (Radon-Nikodym Derivative)  is called the Lebesgue
decomposition. If , then the density function  is called the Radon-Nikodym
derivative of  wrt .

So what?

(X,M) ϕ

μ ϕ(A) = 0 A ∈ M μ(A) = 0

ϕ μ ϕ ≪ μ ν μ ν ≪ μ

μ ≪ nu μ ν

ϕ σ

μ σ σ

ϕs ϕac ϕ = ϕac + ϕs ≪ μ ϕs μ

f

ϕac(A) = ∫
A

fdμ,  for all A ∈ M.

g f = g μ ϕ ≪ μ ϕ(A) = ∫
A
fdμ

A ∈ M

ϕ = ϕac + ϕs

ϕ ≪ μ f

ϕ μ
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1.2.5 Proportional Likelihoods

Likelihoods are equivalent for point estimation as long as they are proportional and the
constant of proportionality does not depend on unknown parameters.

Why?

Consider if  are iid continuous with density  and  where
 is increasing and continuously differentiable. Because  is one-to-one, we can construct
 from  and vice versa.

More formally, the density of  is , where , and

Yi, i = 1, … ,n fY (y; θ) Xi = g(Yi)

g g

Yi Xi

Xi fX(x; θ) = fY (h(x); θ)h′(x) h = g−1

L(θ|X) =
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Example (Likelihood Principle): Consider data from two different sampling plans:

$$
L_1(p | \boldsymbol Y) = {12 \choose S} p^S (1 - p)^{12 - S}, \text{ 
where } S = \sum\limits_{i = 1}^n Y_i
$$

2. A negative binomial experiment, i.e. run the experiment until three zeroes are
obtained.

The ratio of these likelihoods is

Suppose . Is all inference equivalent for these likelihoods? Debatable.

The likelihood principle states all the information about  from an experiment is contained
in the actual observation . Two likelihood functions for  (from the same or different
experiments) contain the same information about  is they are proportional.

L2(p|Y ) = ( )pS(1 − p)3.
S + 2

S

=
L1(p|Y )

L2(p|Y )

S = 9

θ

y θ

θ
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1.2.6 Empirical Distribution Function as MLE

Recall the empirical cdf:

Suppose  are the order statistics of an iid sample from an unknown
distribution function . Our goal is to estimate .

Is this a “good” estimator of ?

y(1) ≤ y(2) ≤ ⋯ ≤ y(n)

FY FY

F̂ Y (y) =

n

∑
i=1

I(y ≥ y(i))
1

n

FY
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Yes, because it’s MLE.

Suppose  are iid with distribution function . Here  is the unknown
parameter.

An approximate likelihood for  is

Y1, … ,Yn F(y) F(y)

F

Lh(F |Y ) =

n

∏
i=1

{F(Yi + h) − F(Yi − h)}
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1.2.7 Censored Data

Censored data occur when the value is only partially known. This is different from
truncation, in which the data does not include any values below (or above) a certain limit.

For example, we might sample only hourseholds that have an income above a limit, . If
all incomes have distribution , then for ,

The likelihood is then

1.2.7.1 Type I Censoring

Suppose a random variable  is normally distributed with mean  and variance , but
whenever , all we observe is that it is less than or equal to . If the sample is set to 
in the censored cases, then define

The distribution function of  is

L0

F(x; θ) y > L0

P(Y1 ≤ y|Y1 > L0) =

X μ σ2

X ≤ 0 0 0

Y = { 0  if X ≤ 0
X  if X > 0.

Y
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Suppose we have a sample  and let  be the number of sample values that are .
Then  and

We might have censoring on the left at  and censoring on the right at , but observe all
values of  between  and . Suppose  has density  and distribution function

 and

If we let  and  be the number of  values  and  then the likelihood of the
observed data  is

Y1, … ,Yn n0 0

m = n − n0

L0 R0

X L0 R0 X f(x; θ)
F(x; θ)

Yi =
⎧
⎨⎩

L0  if Xi ≤ L0

Xi  if L0 < Xi < R0

R0  if Xi ≥ R0

nL nR Xi ≤ L0 ≥ R0

Y1, … ,Yn
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We could also let each  be subject to its own censoring values  and . For the special
case of right censoring, define . In addition, define . Then
the likelihood can be written as

Example (Equipment failure times): Pieces of equipment are regularly checked for failure
(but started at different times). By a fixed date (when the study ended), three of the items
had not failed and therefore were censored.

y 2 72 51 50 33 27 14 24 4 21
delta 1 0 1 0 1 1 1 1 1 0

Suppose failure times follow an exponential distribution .
Then

Xi Li Ri

Yi = min(Xi,Ri) δi = I(Xi ≤ Ri)

F(x;σ) = 1 − exp(−x/σ),x ≥ 0

L(σ|Y ) =
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1.2.7.2 Random Censoring

So far we have considered censoring times to be fixed. This is not required.

This leads to random censoring times, e.g.  , where we assume that the censoring times
are independent of  and iid with distribution function  nd density .

Let’s consider the contributions to the likelihood:

which results in

Ri

X1, … ,Xn G(t) g(t)

L(θ|Y , δ) =


