1.3 Likelihoods for Regression Models

We will start with linear regression and then talk about more general models.

1.3.1 Linear Model

Consider the familiar linear model

$$Y_i = oldsymbol{x}_i^ op oldsymbol{eta} + \epsilon_i, \qquad i = 1, \dots, n,$$

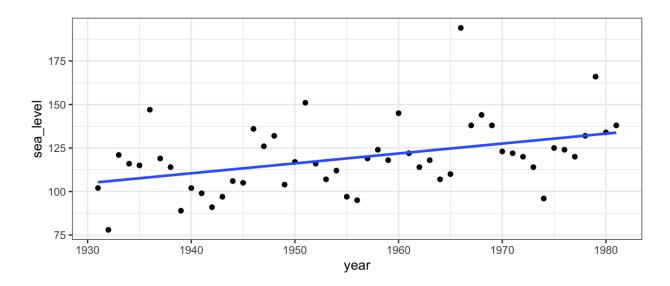
where $\boldsymbol{x}_1,\dots,\boldsymbol{x}_n$ are known nonrandom vectors.

For likelihood-based estimation,

$$L(oldsymbol{eta}, \sigma | \{Y_i, oldsymbol{x}_i\}_{i=1}^n) =$$

What do you do when ϵ_i are not Gaussian?

Example (Venice sea levels): The annual maximum sea levels in Venice for 1931-1981 are:



1.3.2 Additive Errors Nonlinear Model

1.3.3 Generalized Linear Models

Imagine an experiment where individual mosquitos are given some dosage of pesticide. The response is whether the mosquito lives or dies. The data might look something like:

Goal: Model the relationship between the predictor and response.

Question: What would a curve of best fit look like?

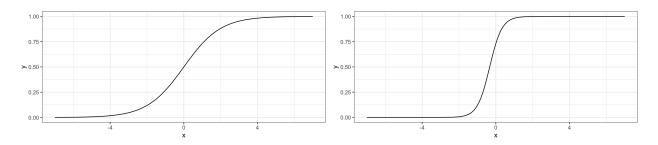
Refined Goal:

Let's build a sensible model.

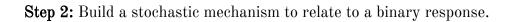
Step 1: Find a function that behaves the way we want.

```
# understanding the logistic function
# first, theta just equals x
x <- seq(-7, 7, .1)
theta <- x
y <- exp(theta)/(1 + exp(theta))
ggplot() + geom_line(aes(x, y))

# now, let theta be a linear function of x
theta <- 1 + 3*x
y <- exp(theta)/(1 + exp(theta))
ggplot() + geom_line(aes(x, y))</pre>
```



1	Likolihoo	y Co	nstruction	and F
	тикеннос	101 (70)	ustruction	\mathbf{a} no \mathbf{r}_i



Step 3: Put Step 1 and Step 2 together.

Fitting our model: Does OLS make sense?

Consider the likelihood contribution.

$$L_i(p_i|Y_i) =$$

So the \log -likelihood contribution is

$$\ell_i(p_i) =$$

Recall, we said $p_i = rac{\exp(heta_i)}{1+\exp(heta_i)}$ was sensible.

Which gives us,

$$\ell_i(heta_i) =$$

So the log-likelihood is

$$\ell(heta_1,\ldots, heta_n)=$$

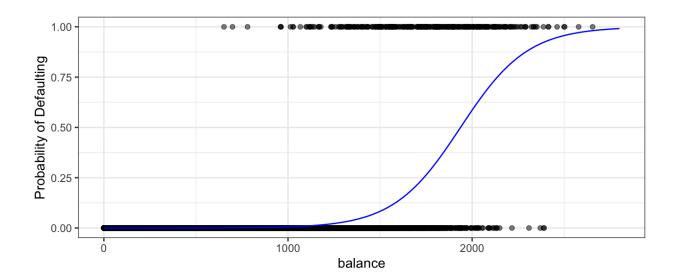
To optimize?

```
## data on credit default
data("Default", package = "ISLR")
head(Default)
##
     default student balance
                                  income
## 1
         No
                 No 729.5265 44361.625
## 2
         No
               Yes 817.1804 12106.135
## 3
                 No 1073.5492 31767.139
         No
## 4
         No
                 No 529.2506 35704.494
## 5
                No 785.6559 38463.496
         No
## 6
         No
                Yes 919.5885 7491.559
## fit model with ML
m0 <- glm(default ~ balance, data = Default, family = binomial)</pre>
tidy(m0) |> kable()
```

term	estimate	std.error	statistic	p.value
(Intercept)	-10.6513306	0.3611574	-29.49221	0
balance	0.0054989	0.0002204	24.95309	0

```
glance(m0) |> kable()
```

null.deviance	df.null	logLik	AIC	BIC	deviance	df.residual	nobs
2920.65	9999	-798.2258	1600.452	1614.872	1596.452	9998	10000



In general, a GLM is three pieces: 1. The random component	
2. The systemic component	
3. A linear predictor	
Remarks:	

Example (Poisson regression):

Consider a general family of distributions:

$$\log f(y_i; heta_i,\phi) = rac{y_i heta_i - b(heta_i)}{a_i(\phi)} + c(y_i,\phi).$$

Example (Normal model):

We can learn something about this distribution by considering it's mean and variance. Because we don't have an explicit form of the density, we rely on two facts:

$$1.~\mathrm{E}\left[rac{\partial \log f(Y_i; heta_i,\phi)}{\partial heta_i}
ight]=0.$$

$$2.~\mathrm{E}\left[rac{\partial^2 \log f(Y_i; heta_i,\phi)}{\partial heta_i^2}
ight] + \mathrm{E}\left[\left(rac{\partial \log f(Y_i; heta_i,\phi)}{\partial heta_i}
ight)^2
ight] = 0.$$

For
$$\log f(y_i; heta_i, \phi) = rac{y_i heta_i - b(heta_i)}{a_i(\phi)} + c(y_i, \phi),$$

Example (Bernoulli model):

$$f(y_i;p_i) = p_i^{y_i} (1-p_i)^{1-y_i}$$

1	Likelihood	Construction	and E
	тикеннооо	CONSTRUCTION	and r

Finally, back to modelling. Our **goal** is to build a relationship between the mean of Y_i and covariates x_i .

Example (Bernoulli model, cont'd):

1.4 Marginal and Conditional Likelihoods

Consider a model which has $\boldsymbol{\theta} = (\boldsymbol{\theta}_1, \boldsymbol{\theta}_2)$, where $\boldsymbol{\theta}_1$ are the parameters of interest and $\boldsymbol{\theta}_2$ are nuisance parameters.

One way to improve estimation for θ_1 is to find a one-to-one transformation of the data Y to (V, W) such that either

The key feature is that one component of each contains only the parameter of interest.

Example (Neyman-Scott problem): Let Y_{ij} , $i=1,\ldots,n, j=1,2$ be intependent normal random variables with possible different means μ_i but the same variance σ^2 .

Our goal is to estimate σ^2 . Should we be able to?

Following the usual arguments,

$$egin{aligned} \hat{\mu}_{i, ext{MLE}} &= rac{Y_{i1} + Y_{i2}}{2} \ \hat{\sigma}_{ ext{MLE}}^2 &= rac{1}{2n} \sum_{i=1}^n \sum_{j=1}^2 (Y_{ij} - \hat{\mu}_{i, ext{MLE}})^2 \end{aligned}$$

1.4 Marginal and Conditional Li...

43

$$\mathrm{E}[\hat{\sigma}_{\mathrm{MLE}}^2] =$$

A reworking of the data seems more promising. Let,

$$V_i = rac{Y_{i1} - Y_{i2}}{\sqrt{2}} \qquad ext{and} \qquad W_i = rac{Y_{i1} + Y_{i2}}{\sqrt{2}}$$

For conditional likelihoods, we can often exploit the existence of sufficient statistics for the nuisance parameters under the assumption that the parameter of interest is known.

Example (Exponential Families): The structure of exponential families is such that it is often possible to exploit their properties to eliminated nuisance parameters. Let *Y* have a density of the form

$$f(y;oldsymbol{\eta}) = h(y) \expiggl\{ \sum_{i=1}^s \eta_i T_i(y) - A(oldsymbol{\eta}) iggr\},$$

then

Thus, exponential families often provide an automatic procedure for finding $oldsymbol{W}$ and $oldsymbol{U}.$

Example (Logistic Regression): For binary Y_i , the standard logistics regression model is

$$P(Y_i = 1) = p_i(oldsymbol{x}_i, oldsymbol{eta}) = rac{\exp(oldsymbol{x}_i^ op oldsymbol{eta})}{1 + \exp(oldsymbol{x}_i^ op oldsymbol{eta})}$$

and the likelihood is

$$L(oldsymbol{eta}|oldsymbol{Y},oldsymbol{X}) =$$