
28 1 Likelihood Construction and E…

1.3 Likelihoods for Regression Models

We will start with linear regression and then talk about more general models.

1.3.1 Linear Model

Consider the familiar linear model

where  are known nonrandom vectors.

For likelihood-based estimation,

Yi = x⊤
i β + ϵi, i = 1, … , n,

x1, … , xn

L(β, σ|{Yi, xi}
n
i=1) =
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What do you do when  are not Gaussian?

Example (Venice sea levels): The annual maximum sea levels in Venice for 1931–1981
are :

ϵi
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1.3.2 Additive Errors Nonlinear Model

1.3.3 Generalized Linear Models

Imagine an experiment where individual mosquitos are given some dosage of pesticide.
The response is whether the mosquito lives or dies. The data might look something like:

Goal: Model the relationship between the predictor and response.

Question: What would a curve of best �t look like?
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Re�ned Goal:

Let’s build a sensible model.

Step 1: Find a function that behaves the way we want.

# understanding the logistic function
# first, theta just equals x
x <- seq(-7, 7, .1)
theta <- x
y <- exp(theta)/(1 + exp(theta))
ggplot() + geom_line(aes(x, y))

# now, let theta be a linear function of x
theta <- 1 + 3*x  
y <- exp(theta)/(1 + exp(theta))
ggplot() + geom_line(aes(x, y))
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Step 2: Build a stochastic mechanism to relate to a binary response.

Step 3: Put Step 1 and Step 2 together.

Fitting our model: Does OLS make sense?
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Consider the likelihood contribution.

So the log-likelihood contribution is

Recall, we said  was sensible.

Which gives us,

So the log-likelihood is

Li(pi|Yi) =

ℓi(pi) =

pi =
exp(θi)

1+exp(θi)

ℓi(θi) =

ℓ(θ1, … , θn) =
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To optimize?

##   default student   balance    income
## 1      No      No  729.5265 44361.625
## 2      No     Yes  817.1804 12106.135
## 3      No      No 1073.5492 31767.139
## 4      No      No  529.2506 35704.494
## 5      No      No  785.6559 38463.496
## 6      No     Yes  919.5885  7491.559

term estimate std.error statistic p.value
(Intercept) -10.6513306 0.3611574 -29.49221 0
balance 0.0054989 0.0002204 24.95309 0

null.deviance df.null logLik AIC BIC deviance df.residual nobs
2920.65 9999 -798.2258 1600.452 1614.872 1596.452 9998 10000

## data on credit default
data("Default", package = "ISLR") 
head(Default)

## fit model with ML
m0 <- glm(default ~ balance, data = Default, family = binomial)
tidy(m0) |> kable()

glance(m0) |> kable()

## plot the curve
x_new <- seq(0, 2800, length.out = 200)
theta <- m0$coefficients[1] + m0$coefficients[2]*x_new
p_hat <- exp(theta)/(1 + exp(theta))

ggplot() +
  geom_point(aes(balance, as.numeric(default) - 1), alpha = 0.5, data 

= Default) +
  geom_line(aes(x_new, p_hat), colour = "blue") + 
  ylab("Probability of Defaulting")
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In general, a GLM is three pieces:

1. The random component

2. The systemic component

3. A linear predictor

Remarks:

Example (Poisson regression):
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Consider a general family of distributions:

Example (Normal model):

log f(yi; θi, ϕ) = + c(yi, ϕ).
yiθi − b(θi)

ai(ϕ)
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We can learn something about this distribution by considering it’s mean and variance.
Because we don’t have an explicit form of the density, we rely on two facts:

1. 

2. 

For ,

E [ ] = 0.
∂ log f(Yi;θi,ϕ)

∂θi

E [ ] + E [( )
2
] = 0.

∂2 log f(Yi;θi,ϕ)

∂θ2
i

∂ log f(Yi;θi,ϕ)

∂θi

log f(yi; θi, ϕ) = + c(yi, ϕ)
yiθi−b(θi)

ai(ϕ)
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Example (Bernoulli model):

f(yi; pi) = p
yi

i (1 − pi)
1−yi
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Finally, back to modelling. Our goal is to build a relationship between the mean of  and
covariates .

Example (Bernoulli model, cont’d):

Yi

xi
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1.4 Marginal and Conditional Likelihoods

Consider a model which has , where  are the parameters of interest and 
are nuisance parameters.

One way to improve estimation for  is to �nd a one-to-one transformation of the data 
to  such that either

The key feature is that one component of each contains only the parameter of interest.

θ = (θ1, θ2) θ1 θ2

θ1 Y

(V , W)
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Example (Neyman-Scott problem): Let  be intependent normal
random variables with possible different means  but the same variance .

Our goal is to estimate . Should we be able to?

Following the usual arguments,

Yij, i = 1, … , n, j = 1, 2
μi σ2

σ2

μ̂i,MLE =

σ̂
2
MLE =

n

∑
i=1

2

∑
j=1

(Yij − μ̂i,MLE)2

Yi1 + Yi2

2

1

2n
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A reworking of the data seems more promising. Let,

E[σ̂2
MLE] =

Vi = and Wi =
Yi1 − Yi2

√2

Yi1 + Yi2

√2
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For conditional likelihoods, we can often exploit the existence of suf�cient statistics for the
nuisance parameters under the assumption that the parameter of interest is known.

Example (Exponential Families): The structure of exponential families is such that it is
often possible to exploit their properties to eliminated nuisance parameters. Let  have a
density of the form

then

Thus, exponential families often provide an automatic procedure for �nding  and .

Y

f(y; η) = h(y) exp{
s

∑
i=1

ηiTi(y) − A(η)},

W U
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Example (Logistic Regression): For binary , the standard logistics regression model is

and the likelihood is

Yi

P(Yi = 1) = pi(xi, β) =
exp(x⊤

i β)

1 + exp(x⊤
i β)

L(β|Y , X) =


