Likelihoods

History of the course:

midlem

1 Likelihood Construction and Estimation

Likelihood -bard Methods

Why do Statisticians love likelihood-based estimation?

1. Invariance property of MLE: If a distribution is parametrized by θ but interest is in a function of θ, Υ(θ), if θ is MLE of θ, ~ (θ) is MLE of ~ (θ).

Downsides?

1.1 Introduction

Definition: Suppose random variables $\boldsymbol{Y} = (Y_1, \dots, Y_n)^\top$ has joint density or probability mass function $f_{\boldsymbol{Y}}(\boldsymbol{y}, \boldsymbol{\theta})$ where $\boldsymbol{\theta} = (\theta_1, \dots, \theta_b)$. Then the *likelihood function* is

L(θ|Y) = f_Y(Y, θ). < in general, likelihood = Joint
Childlihood is random.
(because in depends on the data!),
Know MLE is random + we quantify its
uncertainty.
Grimm a vector of observations y, to likelihood is a function of
$$O$$
:
For any (valid) value of $θ$, it returns a number (the likelihood).
 $\hat{\Theta}_{nLE}$ obstached by finding value of $θ$ which yields max likelihood whe.

Key concept: In all situations, the likelihood is the joint density of the observed data to be analyzed.

1.1.1 Notation

Given \boldsymbol{y} , note that $L(\boldsymbol{\theta}|\boldsymbol{y}): \mathbb{R}^b \to \mathbb{R}$.

$$(\theta_1, \dots, \theta_b)^T$$

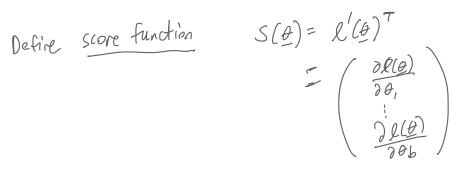
$$(i|alihood \ L(\theta| 14) io \ scalar \ valued!$$

Generally, we optimize $\ell(\boldsymbol{\theta}) = \log L(\boldsymbol{\theta}|\boldsymbol{y}).$

$$\operatorname{crg}_{\underline{\theta}} \max L(\underline{\theta}|\underline{\gamma}) = \operatorname{crg}_{\underline{\theta}} \max L(\underline{\theta})$$

How? Take derivatives, get to zero, solve.

brevention is the derivative of a function (i.e.
$$l(\theta)$$
) with a vector $(\theta)_{j}$
is a row vector $l'(\theta) = \frac{\Im(\theta)}{\Im \theta} = (\frac{\Im(\theta)}{\Im \theta_{j}}, \dots, \frac{\Im(\theta)}{\Im \theta_{b}}).$



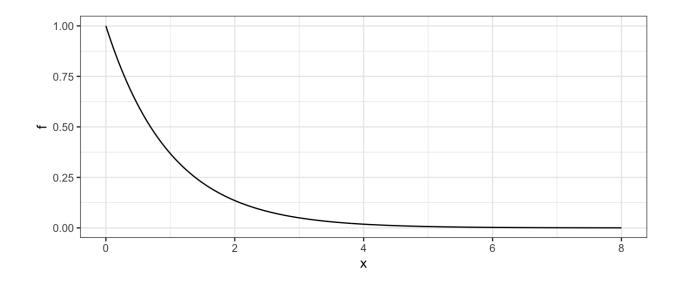
6×1 column rector. **Example:** Suppose we have $Y_1, \ldots, Y_n \stackrel{iid}{\sim} \operatorname{Exp}(\lambda)$. The likelihood function is defined as

$$L(\mathcal{A}(\mathcal{Y}) = f_{\mathcal{Y}}(\mathcal{Y}, \lambda).$$

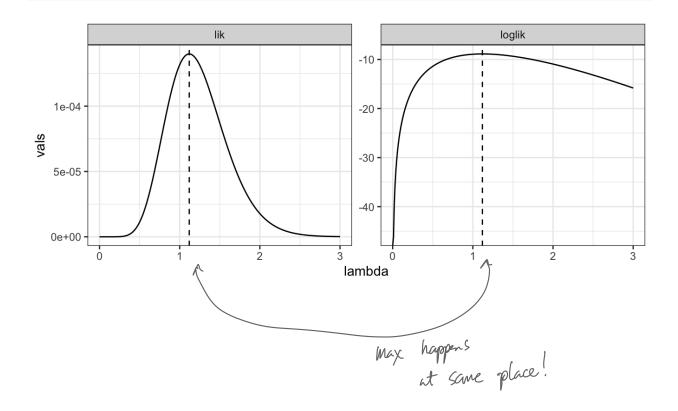
$$= \prod_{i=1}^{T} f_{\mathcal{Y}}(\mathcal{Y}, \lambda)$$

$$= \prod_{i=1}^{T} \mathcal{A}e^{-\mathcal{A}\mathcal{Y}_{i}} = \mathcal{A}e^{-\mathcal{A}\mathcal{E}\mathcal{Y}_{i}} \implies L(\mathcal{A}) = n\log\mathcal{A} - \mathcal{A}\mathcal{E}\mathcal{Y}_{i}$$

```
# likelihood simulation
n <- 10
lambda <- 1
# plot of exponential(lambda) density
data.frame(x = seq(0, 8, .01)) |>
mutate(f = dexp(x, rate = lambda)) |>
ggplot() +
geom_line(aes(x, f))
```



```
# define likelihood
loglik <- function(lambda, data)</pre>
{
 i lik <- prod(dexp(data, rate = lambda))
 $ loglik <- sum(dexp(data, rate = lambda, log = T))</pre>
    out <- data.frame(lik = lik, loglik = loglik) log(f_{y}(\ell_{j}^{\prime}))).
    return(out)
}
# simulate data
data <- rexp(n = n, rate = lambda) / now he have
realized data!
# plot likelihood and loglikelihood
data.frame(lambda = seq(0, 3, by = .01)) |>
  rowwise() >
  mutate(loglik = loglik(lambda, data)) |>
  unnest(cols = c(loglik)) |>
  pivot longer(-lambda, names to = "func", values to = "vals") |>
  ggplot() +
  geom_vline(aes(xintercept = (1 / mean(data)), lty = 2) + # max \leftarrow M \downarrow E
         likelihood estimate is 1/mean
  geom line(aes(lambda, vals)) +
  facet_wrap(~func, scales = "free")
```



The likelihood function is random!

```
for(i in seq len(3)) {
    # simulate data
   data <- rexp(n = n, rate = lambda)
    # plot likelihood and loglikelihood
    data.frame(lambda = seq(0, 3, by = .01)) |>
      rowwise() |>
      mutate(loglik = loglik(lambda, data)) |>
      unnest(cols = c(loglik)) |>
      ggplot() +
      geom vline(aes(xintercept = 1 / mean(data)), lty = 2) + # max
           likelihood estimate is 1/mean
      geom line(aes(lambda, loglik)) +
      theme(text = element text(size = 20)) -> p ## make legible in
           notes
      print(p)
 }
                                                          -10
  -10
                              -10
                                                          -20
  -20
                              -20
                            -201
-301
loglik
                                                       loglik
0-30
  -30
                                                          -40
  -40
                              -40
                   ż
                         3
                                              ż
                                                     3
                                                                          ż
                                                                                 3
     Ó
                                 Ò
            1
             lambda
                                        lambda
                                                                    lambda
 Question: What does likelihood integrate to?
Answer: not 1! - Sunction of O, not P.
Your Turn: What is the effect of sample size on the log-likelihood function? Make a plot
```

showing the log-likelihood function that results from n = 10 vs. n = 100 with corresponding MLE.

Y

1.2 Construction

The use of the likelihood function in parameter estimation is easiest to understand in the case of discrete iid random variables.

rondom

1.2.1 Discrete IID Random Variables

Suppose each of the *n* random variables in the sample Y_1, \ldots, Y_n have probability mass function $f(y; \theta) = P_{\theta}(Y_1 = y), y = y_1, y_2, \ldots$ The likelihood is then defined as:

$$L(\theta|Y) = \text{joint density of observed random variables}$$

$$\stackrel{\text{iid}}{=} \text{ product } \mathfrak{f} \quad univariate "densities"$$

$$= \prod_{i=1}^{n} f(Y_i j \theta) \text{ pmf}$$

$$= \prod_{i=1}^{n} \rho(Y_i^* = Y_i | Y_i) \text{ pmf}$$
where $Y_{i,j}^* \text{ are idd } RV'_{i} w$ same distribution as $Y_{i,j-j}$
(but mutually integrable $\mathfrak{g} \quad Y_{i,j-j}Y_{n}$)

In other words,

the likelihood is The probability of gutting sample actually obtained for a given value of D. (1) In discrete case, can be thought of as a probability. (one what domain?). (2) Will the likelihood sum to 2 over the preameter space? No. (3) Probability of finding a particular realization for a given D. **Example (Fetal Lamb Movements):** Data on counts of movements in five-second intervals of one fetal lamb (n = 240 intervals:)

 No. of Movements
 0
 1
 2
 3
 4
 5
 6
 7

 Count
 182
 41
 12
 2
 0
 0
 1
 = 240.

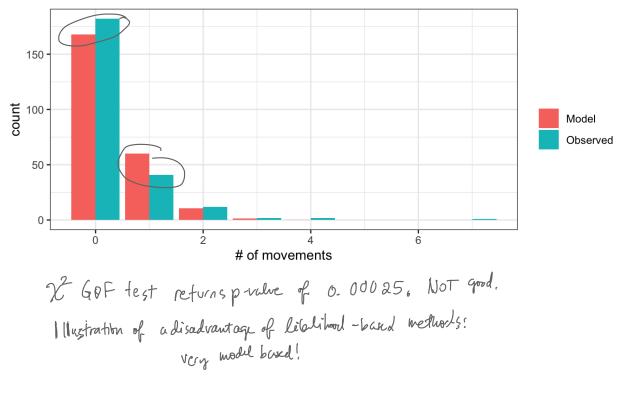
Assume a Poisson model: $P(Y = y) = f_Y(y; \lambda) = rac{\exp(-\lambda)\lambda^y}{y!}$. Then the likelihood is

$$-(\lambda | \Psi) = \frac{n}{\left[1\right]} f_{Y}(\Psi_{i}; \lambda) = \frac{n}{\left[1\right]} \frac{\lambda^{Y_{i}} e^{-\lambda}}{Y_{i}!} = \lambda^{\frac{2}{12}Y_{i}} e^{-\lambda^{2}} \left(\frac{\pi}{12}Y_{i}!\right)^{-1}$$
$$l(\lambda) = \frac{\sum_{i=1}^{n} Y_{i} \log \lambda - \lambda^{2}}{\sum_{i=1}^{n} - \lambda} - \log \left(\frac{\pi}{12}Y_{i}!\right)$$
$$l(\lambda) = \frac{\sum_{i=1}^{n} Y_{i}}{\sum_{i=1}^{n} - \lambda} - \frac{\log (\pi}{12}Y_{i}!)$$

Equating the derivative of the loglikelihood with respect to λ to zero and solving results in the MLE

$$\hat{\lambda}_{\text{MLE}} = \frac{\sum Y_i}{n} = \frac{\$6}{240} = 0.35\%$$

This is the best we can do with this model. But is it good?



1.2.2 Multinomial Likelihoods

The multinomial distribution is a generalization of the binomial distribution where instead of 2 outcomes (success or failure), there are now $k \ge 2$ outcomes.

$$\begin{aligned} & (\text{cassider} \quad \text{independently forsing } n \text{ balls into } k \text{ urns, where } p_i \text{ is probe of } p_k \text{ ball leading in } i^k \text{ urn } a_n \text{ each forse } \tilde{c} = l_{i-1}k. \end{aligned}$$

$$\implies N_i \text{ balls } i_n \quad \text{if } \text{ urn } a_nd \quad \sum_{i=1}^k N_i^i = n. \end{aligned}$$

$$The probability mass function is $(n \text{ ford holds}, k \text{ categores}).$

$$P(N_i = n_{1,\dots,N_k} N_k = n_k) = p(n_{1,\dots,N_k}; p_{12}; p_{12}) = \frac{n!}{n_1! \cdots n_k!} p_i^{n_1} p_k^{n_2} \dots p_k^{n_k} \text{ categores}).$$

$$P(N_i = n_{1,\dots,N_k}, N_k = n_k) = p(n_{1,\dots,N_k}; p_{12}; p_{12}; p_{12}) = \frac{n!}{n_1! \cdots n_k!} p_i^{n_1} p_k^{n_2} \dots p_k^{n_k} \text{ categores}).$$

$$P(N_i = n_{1,\dots,N_k}, N_k = \text{the number of balls in } i^{\text{th urn}}, \sum_{i=1}^k N_i = n \text{ (whet hells is p_k = 1 - \sum_{i=1}^k p_i) p_i^{n_1} \dots p_{k-1}^{n_k} \text{ thorem}).$$

$$L(p \mid h_1 \dots h_k!) = \frac{n!}{n_1! \cdots n_k!} p_i^{N_1} \dots p_{k-1}^{N_k} (1 - \sum_{i=1}^k p_i)^{N_k}.$$

$$P(p_i) = c_{nast} + N_i \log p_i + N_k \log p_{2+} \dots + N_k \log q_{1-k-1} p_i) p_{k-1} p_{k-1}^{n_1} p_{k-1}^{N_k} p_{k-1} p_{k-1}^{N_k} p_{k-1}^{N_k} p_{k-1} p_{k-1}^{N_k} p_{k-1} p_{k-1}^{N_k} p_{k-1} p_{k-1}^{N_k} p_{k-1} p_{k-1}^{N_k} p_{k-1} p_{k-1} p_{k-1}^{N_k} p_{k-1} p_$$$$

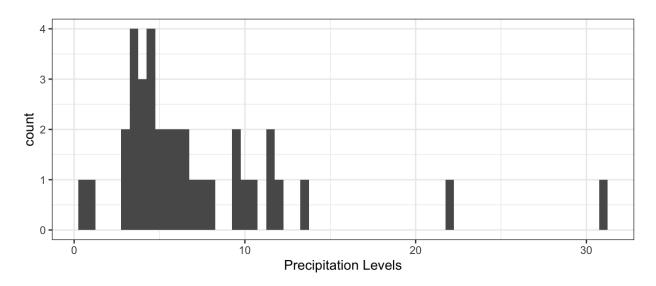
More interesting multinomial likelihoods arise when the p_i are modeled as a function of a lesser number of parameters $\theta_1, \ldots, \theta_m, m < k-1$.

Example (Capture-Recapture): To estimate fish survival during a specific length of time (e.g., one month), a common approach is to use a removal design.

1.2.3 Continuous IID Random Variables

Recall: the likelihood is the joint density of data to be analyzed.

Example (Hurricane Data): For 36 hurricanes that had moved far inland on the East Coast of the US in 1900-1969, maximum 24-hour precipitation levels during the time they were over mountains.



We model the precipitation levels with a gamma distribution, which has density

$$f(y;lpha,eta)=rac{1}{\Gamma(lpha)eta^lpha}y^{lpha-1}\exp(-y/eta),\quad y>0,lpha,eta>0.$$

This leads to the likelihood

$$L(\underline{\theta}|\underline{Y}) = \prod_{i=1}^{n} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} Y_{i}^{\alpha-1} e^{-\gamma i/\beta} = \xi \Gamma(\alpha) \overline{\beta}^{n} \overline{\beta} \xi \prod_{i=1}^{n} Y_{i} \overline{\beta}^{\alpha-1} e^{-\frac{\xi}{\xi}Y_{i}/\beta}$$

Of course, this cannot be interpreted as a probability because

$$P(Y = y) = O \quad \forall y!$$

as h ord To get a probability, need to go from a density to a measure. i.e. inkorate!

But likelihoord not recessarily integrate to 1 (won't reform value in [0,1] recessarily).

But it may be useful to think of the value of the likelihood as being proportional to a probability.



More formally, begin with the definition of a derivative

$$g'(x)=\lim_{h
ightarrow 0^+}rac{g(x+h)-g(x-h)}{2h}$$

Let F be the cumulative distribution function of a continuous random variable Y, then (if the derivative exists)

$$\underbrace{f(y)}_{h \to 0^+} = \lim_{h \to 0^+} \frac{F(y+h) - F(y-h)}{2h} = \lim_{h \to 0^+} \frac{P(Y \in (y-h, y+h])}{2h}$$

If we substitute this definition of a density into the definition of the likelihood

$$L\left(\underbrace{\theta}_{i}|\Psi\right) = \underset{i=1}{\overset{n}{ f}} f(Y_{i}; \underline{\theta})$$

$$= \underset{i=1}{\overset{n}{ f}} \underset{N \to 0t}{\overset{lin}{ f}} \frac{F_{0}(Y_{i}; \underline{h}_{i}) - F_{0}(Y_{i}; \underline{h}_{i})}{2h}$$

$$= \underset{N \to 0t}{\overset{n}{ f}} \frac{1}{2h} \left(F_{0}(Y_{i}; \underline{h}_{i}) - F_{0}(Y_{i}; \underline{h}_{i})\right)$$
For small h,
how to the form of the likelihood is proportioned to
$$= \underset{N \to 0t}{\overset{lin}{ f}} \frac{1}{2h} \left(\frac{1}{2h}\right) \underset{i=1}{\overset{n}{ f}} \frac{P_{i}(Y_{i} \in (Y_{i}; -h_{i}, Y_{i}; \underline{h}_{i}))}{(\underline{h}_{i} = 0 \text{ f } I_{i} = 0$$

=> likelihood is proportion of the probability of obtaining a new sample that is close to the sample we obtained.

Compare this to the iid discrete case:

So likalihoods for discrete RVS get weighted diffectly then likelihoods for Continuous RVS.

Example (Hurricane Data, Cont'd): Recall with a gamma model, the likelihood for this example is

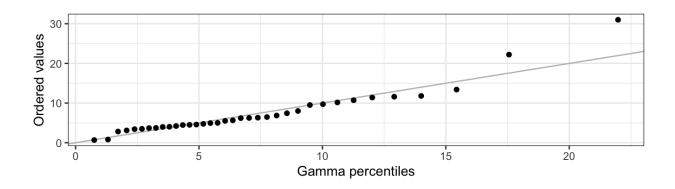
$$L(oldsymbol{ heta}|oldsymbol{Y}) = \{\Gamma(lpha)\}^{-n}eta^{-nlpha} \Big\{\prod Y_i\Big\}^{lpha-1} \exp\Bigl(-\sum y_i/eta\Bigr),$$

and log-likelihood

 $\ell(\boldsymbol{ heta}) =$

```
## loglikelihood function
neg_gamma_loglik <- function(theta, data) {
    -sum(log(dgamma(data, theta[1], scale = theta[2])))
}
## maximize
mle <- nlm(neg_gamma_loglik, c(1.59, 4.458), data = hurr_rain)
mle$estimate</pre>
```

[1] 2.187214 3.331862



1.2.4 Mixtures of Discrete and Continuous RVs

Some data Y often have a number of zeros and the amounts greater than zero are best modeled by a continuous distribution.

Ex:

In other words, they have positive probability of taking a value of exactly zero, but continuous distribution otherwise.

A sensible model would assume Y_i are iid with cdf

$$F_Y(y;p,oldsymbol{ heta}) = egin{cases} 0 & y=0\ p & y=0\ p+(1-p)F_T(y;oldsymbol{ heta}) & y>0 \end{cases}$$

where 0 is <math>P(Y = 0) and $F_T(y; \theta)$ is a distribution function for a continuous positive random variable.

Another way to write this:

How to go from here to get a likelihood?

One approach: let n_0 be the number of zeroes in the data and $m = n - n_0$ be the number of non-zero Y_i . This leads to an intuitive way to contruct the likelihood for iid Y_1, \ldots, Y_n distributed according to the above distribution:

$$L(oldsymbol{ heta}|oldsymbol{Y}) = \lim_{h
ightarrow 0^+} \left(rac{1}{2h}
ight)^m \prod_{i=1}^n \{F_Y(Y_i+h;p,oldsymbol{ heta}) - F_Y(Y_i-h;p,oldsymbol{ heta})\}$$

Feels a little arbitrary in how we are defining different weights on our likelihood for discrete and continuous parts.

Turns out, it doesn't matter! (Need some STAT 630/720 to see why.)

Definition (Absolute Continuity) On $(\mathbb{X}, \mathcal{M})$, a finitely additive set function ϕ is *absolutely* continuous with respect to a measure μ if $\phi(A) = 0$ for each $A \in \mathcal{M}$ with $\mu(A) = 0$. We also say ϕ is *dominated* by μ and write $\phi \ll \mu$. If ν and μ are measures such that $\nu \ll \mu$ and $\mu \ll nu$ then μ and ν are equivalent.

Theorem (Lebesgue-Randon-Nikodym) Assume that ϕ is a σ -finite countably additive set function and μ is a σ -finite measure. There exist unique σ -finite countably additive set functions ϕ_s and ϕ_{ac} such that $\phi = \phi_{ac} + \phi_s \ll \mu$, ϕ_s and μ are mutually singular and there exists a measurable extended real valued function f such that

$$\phi_{ac}(A)=\int_A f d\mu, \qquad ext{for all } A\in \mathcal{M}.$$

If g is another such function, then f = g a.e. wrt μ . If $\phi \ll \mu$ then $\phi(A) = \int_A f d\mu$ for all $A \in \mathcal{M}$.

Definition (Radon-Nikodym Derivative) $\phi = \phi_{ac} + \phi_s$ is called the *Lebesgue* decomposition. If $\phi \ll \mu$, then the density function f is called the *Radon-Nikodym* derivative of ϕ wrt μ .

So what?

1.2 Construction

1.2.5 Proportional Likelihoods

Likelihoods are equivalent for point estimation as long as they are proportional and the constant of proportionality does not depend on unknown parameters.

Why?

Consider if Y_i , i = 1, ..., n are iid continuous with density $f_Y(y; \theta)$ and $X_i = g(Y_i)$ where g is increasing and continuously differentiable. Because g is one-to-one, we can construct Y_i from X_i and vice versa.

More formally, the density of X_i is $f_X(x; \theta) = f_Y(h(x); \theta)h'(x)$, where $h = g^{-1}$, and

$$L(\boldsymbol{ heta}|\boldsymbol{X}) =$$

Example (Likelihood Principle): Consider data from two different sampling plans:

```
$$
L_1(p | \boldsymbol Y) = {12 \choose S} p^S (1 - p)^{12 - S}, \text{
where } S = \sum\limits_{i = 1}^n Y_i
$$
```

2. A negative binomial experiment, i.e. run the experiment until three zeroes are obtained.

$$L_2(p|oldsymbol{Y}) = inom{S+2}{S}p^S(1-p)^3.$$

The ratio of these likelihoods is

$$rac{L_1(p|oldsymbol{Y})}{L_2(p|oldsymbol{Y})} =$$

Suppose S = 9. Is all inference equivalent for these likelihoods? Debatable.

The likelihood principle states all the information about $\boldsymbol{\theta}$ from an experiment is contained in the actual observation \boldsymbol{y} . Two likelihood functions for $\boldsymbol{\theta}$ (from the same or different experiments) contain the same information about $\boldsymbol{\theta}$ is they are proportional.

1.2.6 Empirical Distribution Function as MLE

Recall the empirical cdf:

Suppose $y_{(1)} \leq y_{(2)} \leq \cdots \leq y_{(n)}$ are the order statistics of an iid sample from an unknown distribution function F_Y . Our goal is to estimate F_Y .

$$\hat{F}_Y(y) = rac{1}{n}\sum_{i=1}^n \mathbb{I}(y \geq y_{(i)})$$

Is this a "good" estimator of F_Y ?

Yes, because it's MLE.

Suppose Y_1, \ldots, Y_n are iid with distribution function F(y). Here F(y) is the unknown parameter.

An approximate likelihood for ${\cal F}$ is

$$L_h(F|oldsymbol{Y}) = \prod_{i=1}^n \{F(Y_i+h) - F(Y_i-h)\}$$

1.2.7 Censored Data

Censored data occur when the value is only partially known. This is different from *truncation*, in which the data does not include any values below (or above) a certain limit.

For example, we might sample only hourseholds that have an income above a limit, L_0 . If all incomes have distribution $F(x; \theta)$, then for $y > L_0$,

 $P(Y_1 \leq y | Y_1 > L_0) =$

The likelihood is then

1.2.7.1 Type I Censoring

Suppose a random variable X is normally distributed with mean μ and variance σ^2 , but whenever $X \leq 0$, all we observe is that it is less than or equal to 0. If the sample is set to 0 in the censored cases, then define

$$Y = egin{cases} 0 & ext{if } X \leq 0 \ X & ext{if } X > 0. \end{cases}$$

The distribution function of Y is

Suppose we have a sample Y_1, \ldots, Y_n and let n_0 be the number of sample values that are 0. Then $m = n - n_0$ and

We might have censoring on the left at L_0 and censoring on the right at R_0 , but observe all values of X between L_0 and R_0 . Suppose X has density $f(x; \theta)$ and distribution function $F(x; \theta)$ and

$$Y_i = egin{cases} L_0 & ext{if } X_i \leq L_0 \ X_i & ext{if } L_0 < X_i < R_0 \ R_0 & ext{if } X_i \geq R_0 \end{cases}$$

If we let n_L and n_R be the number of X_i values $\leq L_0$ and $\geq R_0$ then the likelihood of the observed data Y_1, \ldots, Y_n is

We could also let each X_i be subject to its own censoring values L_i and R_i . For the special case of right censoring, define $Y_i = \min(X_i, R_i)$. In addition, define $\delta_i = \mathbb{I}(X_i \leq R_i)$. Then the likelihood can be written as

Example (Equipment failure times): Pieces of equipment are regularly checked for failure (but started at different times). By a fixed date (when the study ended), three of the items had not failed and therefore were censored.

у	2	72	51	50	33	27	14	24	4	21
delta	1	0	1	0	1	1	1	1	1	0

Suppose failure times follow an exponential distribution $F(x;\sigma) = 1 - \exp(-x/\sigma), x \ge 0$. Then

$$L(\sigma|oldsymbol{Y}) =$$

1.2.7.2 Random Censoring

So far we have considered censoring times to be fixed. This is not required.

This leads to random censoring times, e.g. R_i , where we assume that the censoring times are independent of X_1, \ldots, X_n and iid with distribution function G(t) nd density g(t).

Let's consider the contributions to the likelihood:

which results in

$$L(oldsymbol{ heta}|oldsymbol{Y},oldsymbol{\delta}) =$$