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1 Likelihood Construction and Estimation

Why do Statisticians love likelihood-based estimation?

1. 

2. 

3. 

4. 

Downsides?

1. 

2. 

Likelihood-basedMethods

ALE

LRT

Likelihood-based uncertainty (CI's).

Invarianceproperty orALE: Ifa distribution is parametrized by 8 but

interest is in a function of 8, ECE), IfIis MBEof 8, (8) is Mr.z of(A).

Asymptotically unbiased;unstistent

(i,((8 - 0 >s) =0

Asymptotically efficient;variance achieve
Cramer - Rao Lower Bound.

estinator has all the information.

Relationship / Fister Information
matrixallows for construction of CI's.

(based on asymptotic properties).

Very model based!You areassuming know entire distribution

numericaloptimization.
Itoften require

still no. We it!
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1.1 Introduction

De�nition: Suppose random variables  has joint density or probability
mass function  where . Then the likelihood function is

Key concept: In all situations, the likelihood is the joint density of the observed data to be
analyzed.

is
->in gerzal, likelihord: joint
I
likelihood israndom
--

because itdepends on the data!).

kow MLE is random to we quantifyits
uncertainty.

Given a vector of observations , tobikoihoodisa function of1:

for any
(valid) value of 8, itreturns a number (thelikelihood).

Enzobtained by finding value of t which yieldshadvalue,

-

comments?

① "density"can wear continuous density or prof.

D "observed data"will be generalized. E.g,
censored data.
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1.1.1 Notation

Given , note that .

Generally, we optimize .

How?

0 =(0, --,0y)T

Likelihood L(EPA) isscalar valued!

ur

monotone increasing

argmax (IE(z)
= arymax
(E).
~

Take derivatives, setto zero, solve.

Generally convention is thederivate of a function (i.e. I(E)) nota rector (E);

is a row refor (CE)
==coto....,)

Define Sunction S(E) =l'(E)
*

I-

(
b x

column rector.
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Example: Suppose we have . The likelihood function is de�ned as

# likelihood simulation
n <- 10
lambda <- 1

# plot of exponential(lambda) density
data.frame(x = seq(0, 8, .01)) |>
  mutate(f = dexp(x, rate = lambda)) |>
  ggplot() +
  geom_line(aes(x, f))

((x)1) =fy17,x).
=fy(Yiix)
=xe*i= *-> U(x) =nloge - ,
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# define likelihood
loglik <- function(lambda, data)
{
    lik <- prod(dexp(data, rate = lambda))
    loglik <- sum(dexp(data, rate = lambda, log = T))
    
    out <- data.frame(lik = lik, loglik = loglik)
    return(out)
}   

# simulate data
data <- rexp(n = n, rate = lambda)

# plot likelihood and loglikelihood
data.frame(lambda = seq(0, 3, by = .01)) |>
  rowwise() |>
  mutate(loglik = loglik(lambda, data)) |>
  unnest(cols = c(loglik)) |>
  pivot_longer(-lambda, names_to = "func", values_to = "vals") |>
  ggplot() +
  geom_vline(aes(xintercept = 1 / mean(data)), lty = 2) + # max 

likelihood estimate is 1/mean
  geom_line(aes(lambda, vals)) +
  facet_wrap(~func, scales = "free")

L

⑯

Vog(fy(4;37).

-now hehave
L realized data!

- 2 MLE

We
max happens

atsame place!
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The likelihood function is random!

Your Turn: What is the effect of sample size on the log-likelihood function? Make a plot
showing the log-likelihood function that results from  vs.   with
corresponding MLE.

for(i in seq_len(3)) {
  # simulate data
  data <- rexp(n = n, rate = lambda)
  
  # plot likelihood and loglikelihood
  data.frame(lambda = seq(0, 3, by = .01)) |>
    rowwise() |>
    mutate(loglik = loglik(lambda, data)) |>
    unnest(cols = c(loglik)) |>
    ggplot() +
    geom_vline(aes(xintercept = 1 / mean(data)), lty = 2) + # max 

likelihood estimate is 1/mean
    geom_line(aes(lambda, loglik)) +
    theme(text = element_text(size = 20)) -> p ## make legible in 

notes
  
    print(p)
}

stion: What doeseachhoodintegratetodo, nty.
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1.2 Construction

The use of the likelihood function in parameter estimation is easiest to understand in the
case of discrete iid random variables.

1.2.1 Discrete IID Random Variables

Suppose each of the  random variables in the sample  have probability mass
function . The likelihood is then de�ned as:

In other words,

wandom

d protestof univariate densities"
=f(jE)

i

re

pref

= P(Y =Y: (i)

where Y,*..., Yn*are ied RV'smy save distribution as Y.--,Ya

(butmutually independentof Y....,Yn)

the likelihood is the probabilityof gutting sample actually obtained for a given value oft

⑪ In discrete case, can be thoughtof as
amility (over whatdomain?)

② Will thelikelihood sum to 1 over thepractor space? No.

③ Probabilityoffinding a particular realization for a given E..
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Example (Fetal Lamb Movements): Data on counts of movements in �ve-second intervals
of one fetal lamb (  intervals:)

No. of Movements 0 1 2 3 4 5 6 7
Count 182 41 12 2 2 0 0 1

Assume a Poisson model: . Then the likelihood is

Equating the derivative of the loglikelihood with respect to  to zero and solving results in
the MLE

This is the best we can do with this model. But is it good?

=240.

rid

↳x11) =,ty(wis):** =-(wi!)"

e(x) =EYiloge -rx- log (πYi!).

e) = -no.

i = =

0.358.

⑧

6

* GoF testreturnsp-rate of 0.00025. Notgood.

Illustration of a disadvantage of liblitord-basedmethof?!

very
model bused!

py 31-32 of ESIextends to zero-Inflated Poison.
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1.2.2 Multinomial Likelihoods

The multinomial distribution is a generalization of the binomial distribution where instead
of 2 outcomes (success or failure), there are now  outcomes.

The probability mass function is

For  the number of balls in  urn,

The maximum likelihood estimator of :

More interesting multinomial likelihoods arise when the  are modeled as a function of a
lesser number of parameters , .

ne
more interesting discrete likelihoods.

Consider independently tossing a balls intoKurns, where pi is probe of theball Carding in
iturn on each toss i = 1..., K.

=>N; balls in
itsurn and EPNi =n.
In total trials, I categories).

P(N, =n, . . ., N, =4x)
=p(n,,. .,nx; Pic -Pk)

-! Pipe... pick where of pill and Epi =1
-

&Ni =1 (totheballs
note pr=1-pi

- i
=

1 thrown).

Hobe) observe
datch e

L (N. --,Ns) =! --di
=>N;s notindependet!

=1p,v....pic" (I-.0i)N
N!! ... Nic!

=> e(p)
=

const+N,logp, +NalogPat---+ Nplog(1-,wi)
mee

e =-,p; o S
Nc0....0 =N

PR :(i)
-(i =1

- -I

=>NkPi-N; P=0
->Birre= quhatyourwin
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Example (Capture-Recapture): To estimate �sh survival during a speci�c length of time
(e.g., one month), a common approach is to use a removal design.
-

S=prob of fish surviving one month.

fixed.
~

Time 0:Catch and tag fish.

Time 1:catch and remove some of tagged fish.

P
=

pob tagged fish is caughtand removed. prob. sucaught
N=# tagged fish removed attime 1. if

prob a tagged fish is caught
oftime 1 = sop

=Pr

Time 2:repeat
N2 = tagged fish removed at tire 2.

prob a tugged fish is caughtatfire 2
=s21-p)P =P2

:
Time K-1: repeat

NEr=#f tagged fishremoved attime K-1

prob a tagged
fish is caught atticks(1-p)*p =

PK-1

kM: tagged fish is notremoved

Ni
=

n = Ni
P1 =1 - sp - (rp)p - s1-pp

- ... - (-p)p =1 - Epi
Goal:estimate p

and s

say you
catch and remove Nick fishkfires, Nin known.

-

the likelihood is the probabilityof catching Nis-iNs w/ n'totaltagged.
k-1

-mulinomicepitsii-pe,itsky
and pit I-Eit

N,! ... Nc!

substitutep,s) = ! (SP) (s(-)... (sGrp)
-p

↑

whatnow? take long to partic derivates
hotsap,

where pit l-sp-s(r-pp-...-php.
solve?

↑

complicated, notlog friendly.

(computer)
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1.2.3 Continuous IID Random Variables

Recall: the likelihood is the joint density of data to be analyzed.

Example (Hurricane Data): For  hurricanes that had moved far inland on the East Coast
of the US in 1900-1969, maximum 24-hour precipitation levels during the time they were
over mountains.

We model the precipitation levels with a gamma distribution, which has density

This leads to the likelihood

Of course, this cannot be interpreted as a probability because

-

↳E17)= apatieile=EN5" * 51,4i3eiil

P(Y =y) =0 kz!
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To get a probability, need to go from a density to a measure.

But it may be useful to think of the value of the likelihood as being proportional to a
probability.

More formally, begin with the de�nition of a derivative

Let  be the cumulative distribution function of a continuous random variable , then (if
the derivative exists)

If we substitute this de�nition of a density into the de�nition of the likelihood

i.e. integrate!

Butlikelihood notnecessarilyintegrate to1 (won'treturn role in20,17 recessarily).

Given data yis--Yn

21401)-atzative seton
a

prob is approximately I pay;*filPosy:

y I
lim P(Y=(y-h, yth3)
-

- h-Ot 24.

((617) =5 (4:;E)

-lin Edit
- Foch)
24

not

= (F((ith) - E(7:-h)) For
small 4,

-lin (n)" ,PolY*(Yi-h, Yith]). eilalihood isproportant
as h- 0

- pobto ngOt
u-

and (a)tobalance. proportionality
Ty,* indep ofY;w/ same don at y

"constant"be cause it

sloesn'tdepend on t

=>likelihood is proportiontothe probabilityof obtaining a new sample that is be to thearea
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Compare this to the iid discrete case:

(11) = 5(4i;0
=im 5F(i+hj0)-f(Y;-hj0)3

4-0
+i=1

know he don'tneed the proportionalityconstant.

So likelihoods for discrete RVs getweighted differently thenlikelihoods for

Continuous RVs.

This has todo my underlying dominating measure of these BVs

(discrete: counting measure C
continuousLebesgre

measure

Thoughtfor later:what
aboutmixtures?
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Example (Hurricane Data, Cont’d): Recall with a gamma model, the likelihood for this
example is

and log-likelihood

## [1] 2.187214 3.331862

## loglikelihood function
neg_gamma_loglik <- function(theta, data) {
  -sum(log(dgamma(data, theta[1], scale = theta[2])))
}

## maximize
mle <- nlm(neg_gamma_loglik, c(1.59, 4.458), data = hurr_rain)
mle$estimate

## Gamma QQ plot
data.frame(theoretical = qgamma(ppoints(hurr_rain), mle$estimate[1], 

scale = mle$estimate[2]),
           actual = sort(hurr_rain)) |>
  ggplot() +
  geom_abline(aes(intercept = 0, slope = 1), colour = "grey") +
  geom_point(aes(theoretical, actual)) +
  xlab("Gamma percentiles") + ylab("Ordered values")

Y Let=0

take derives,

solve?

-- nlogr -nalog +(-1) [legsi -it rat12=1

-

g FunerascateA
so we can use him (minimizes).

derius of Gamma likelihood do notresult in liver systemof egins

I
partial

->use numerical optimization (common!).

optim
amut Bmz

~
quantitiesare fitted red

e

-ldaFicordered)

are
quartiles notgrat

fithere.

ok
fit
-
n
quartiles.
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1.2.4 Mixtures of Discrete and Continuous RVs

Some data  often have a number of zeros and the amounts greater than zero are best
modeled by a continuous distribution.

Ex:

In other words, they have positive probability of taking a value of exactly zero, but
continuous distribution otherwise.

A sensible model would assume  are iid with cdf

where  is  and  is a distribution function for a continuous
positive random variable.

Another way to write this:

How to go from here to get a likelihood?

Rainfall, snowfall, Artof time
Iclimb in a day.

--

- different from ZIP, which is discrete.

record
- can be generalized toothercases, pointmass doesn'thave tobe atzero (e.g. linkage)

B1----------
re

·*

Fy(y;,) =P(yxy) =pH(0 = y) +(1-p)=(y;=).

No problems w/ cdf.

Whatisthedensity"here?
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One approach: let  be the number of zeroes in the data and  be the number
of non-zero . This leads to an intuitive way to contruct the likelihood for iid 
distributed according to the above distribution:

Feels a little arbitrary in how we are de�ning different weights on our likelihood for
discrete and continuous parts.

Turns out, it doesn’t matter! (Need some STAT 630/720 to see why.)

practical.
~

*Irecalling the constructionof likelihoods for its dissat
) weights for

its
,
id. WVs.

part.
Pr

4,=6

-hip,E)-fy)-h;p,)3"mt. fetishi,
En ei's 20.

=him 4p+(1-p)E(hiE)?"x lohip-it;it
n- ot

=n
-M

=p4ox(1-p)*4 5
+(7i;E).

for

uni componentcontinuous
nonzero

values.
M

Bernoulli
componentfor
no =

n-m
zeros.

e(P,E) =(n-m)loyp +mlog(1
-p)
+y50107+MijE).

Notice: pacz=Am
1 Emit obtained in usual way

from mobs. WI density fily;)
un

will only use 4;70

Kind of similar to law of total probability:

<,y) "otimaply=y,1i=)Pli=) +PCYi=yillio
=Edyt)-p +defff(yilE)e(r-p)3 =p*Cr-p)of+(yilE)

(mostly)

-much!
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De�nition (Absolute Continuity) On , a �nitely additive set function  is absolutely
continuous with respect to a measure  if  for each  with . We
also say  is dominated by  and write . If  and  are measures such that 
and  then  and  are equivalent.

Theorem (Lebesgue-Randon-Nikodym) Assume that  is a -�nite countably additive set
function and  is a -�nite measure. There exist unique -�nite countably additive set
functions  and  such that ,  and  are mutually singular and
there exists a measurable extended real valued function  such that

If  is another such function, then  a.e. wrt . If  then  for all
.

De�nition (Radon-Nikodym Derivative)  is called the Lebesgue
decomposition. If , then the density function  is called the Radon-Nikodym
derivative of  wrt .

So what?

smalle.

are
Ex:continuous den is dominated by theLebesque measure.

Ex:a discrete den is dominated by thecounting measure.

B

-

Ia setB sit.

Ps(B)
=0 and M(BC)

=0

R-N derivative
↑a density"

S
I

Toink abouta 0W/ pes value at 0 and continuous 20. Let M=Lebesgre
O =

Louthy measure on 203.

u(303) =0, but(303) = 0 =>0s=U and Pac is the rest.

-

letM
=Lebesgre measure over t lements

in

V
=counting measure over 303.

~sum
over503.

=>P(y=A(E) =(,f(y;0)du(y) +(P(y;o)dr/y).
25x

=

M+r and fx(y;E) =(y +303) f(y;-) +18y =503) p(y;E).
=>P(YEAN):( fx(y;E)dx(y).

*

R-N derivative of prob measure of y => valid density.

Let LxCE11):jointdensityof observed data!



1.2 Construction 19

Aim:We can scale the continuous and discrete parts of likelihood

and still have a valid likelihood.

See:Let use dominating measure xx*=Gi +B.8 for G, BC0.
-

then coresponding R-Nderivative fxx(y;t) =#4303) f(y(E) +203) plylE

=>P(YtA1) =(q***(yi)dXxxy).
A valid likelihood would be (*x(817) =faxy1E).

->We can scale the continuous and discrete parts of thelikelihood
however

we like and its still valid

Implications:We can scale thediscrete and continuous components however we like.

- Whattodo? Mostly doesn'tmatter.

Let's say
we have ascle my No Y, =0 and m

=n- No Y,20 lid.

Lax(E(7) =1,fxx (Y;iE)
-(YE) f(y:;)

Yi=0

=

aut,moM:jtof4:jE.
=m,fx(Yis) 42 x (E17).

=>Scaling can be ignored in MLE applications.
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1.2.5 Proportional Likelihoods

Likelihoods are equivalent for point estimation as long as they are proportional and the
constant of proportionality does not depend on unknown parameters.

Why?

Consider if  are iid continuous with density  and  where
 is increasing and continuously differentiable. Because  is one-to-one, we can construct
 from  and vice versa.

More formally, the density of  is , where , and

-

& -

know 4=g(Xil.
=>Etis.., Yn3 and Exis ... Xn] are "equivalent" because they contain exactly the same informatcher

Cintrition) => likelihood inframebased on ET--Yn3 should be identical toinframerbased on Exi.-eXa].
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Example (Likelihood Principle): Consider data from two different sampling plans:

$$
L_1(p | \boldsymbol Y) = {12 \choose S} p^S (1 - p)^{12 - S}, \text{ 
where } S = \sum\limits_{i = 1}^n Y_i
$$

2. A negative binomial experiment, i.e. run the experiment until three zeroes are
obtained.

The ratio of these likelihoods is

Suppose . Is all inference equivalent for these likelihoods? Debatable.

The likelihood principle states all the information about  from an experiment is contained
in the actual observation . Two likelihood functions for  (from the same or different
experiments) contain the same information about  is they are proportional.
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1.2.6 Empirical Distribution Function as MLE

Recall the empirical cdf:

Suppose  are the order statistics of an iid sample from an unknown
distribution function . Our goal is to estimate .

Is this a “good” estimator of ?
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Yes, because it’s MLE.

Suppose  are iid with distribution function . Here  is the unknown
parameter.

An approximate likelihood for  is
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1.2.7 Censored Data

Censored data occur when the value is only partially known. This is different from
truncation, in which the data does not include any values below (or above) a certain limit.

For example, we might sample only hourseholds that have an income above a limit, . If
all incomes have distribution , then for ,

The likelihood is then

1.2.7.1 Type I Censoring

Suppose a random variable  is normally distributed with mean  and variance , but
whenever , all we observe is that it is less than or equal to . If the sample is set to 
in the censored cases, then de�ne

The distribution function of  is
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Suppose we have a sample  and let  be the number of sample values that are .
Then  and

We might have censoring on the left at  and censoring on the right at , but observe all
values of  between  and . Suppose  has density  and distribution function

 and

If we let  and  be the number of  values  and  then the likelihood of the
observed data  is
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We could also let each  be subject to its own censoring values  and . For the special
case of right censoring, de�ne . In addition, de�ne . Then
the likelihood can be written as

Example (Equipment failure times): Pieces of equipment are regularly checked for failure
(but started at different times). By a �xed date (when the study ended), three of the items
had not failed and therefore were censored.

y 2 72 51 50 33 27 14 24 4 21
delta 1 0 1 0 1 1 1 1 1 0

Suppose failure times follow an exponential distribution .
Then
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1.2.7.2 Random Censoring

So far we have considered censoring times to be �xed. This is not required.

This leads to random censoring times, e.g.  , where we assume that the censoring times
are independent of  and iid with distribution function  nd density .

Let’s consider the contributions to the likelihood:

which results in


