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1.3 Likelihoods for Regression Models

We will start with linear regression and then talk about more general models.

1.3.1 Linear Model

Consider the familiar linear model

where  are known nonrandom vectors.

For likelihood-based estimation,

↓

nonlinea

-> [Ei] = 0 and Var[E] = o
"

often estimate I by Bors
,

which does not require a distribution for ;

we need a distribution for Ei ! Start / :NN(0 ,
64

.

-

(6)exp(-(fi->

- ( )" exp (-2.,(i-

take log ,

derir attes,
Set = 0

,

same as Bors !solve
un = (XTx) xTZ

12

Gre
: i CY-c)" Conly asymptotically obiused) .
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What do you do when  are not Gaussian?

Example (Venice sea levels): The annual maximum sea levels in Venice for 1931–1981
are :

-> transform data so Ei look Gaussian .

= Use a difsent distribution for Ei !

-

we know maxima are not Gaussion !

I least

squares
lite.

Approach 1: OLS E[E] =

0
, Var[Ei] = 02 No distributional assumption .

Approach 2 :

Assume in Gumbellextumevaleas e)
=> (( , 6124: , 2:3:=) = E

,
f(yi - zif) = texp(- ) exp(-exp)-))

YOUR TURN : Fit both approaches to the venice data
.

-

OLS GUMBEL
--

⑤= 104
.

8
= S6 (St . 177) 5= 96

.

8 , , = 0056086)

OLSUs MLE ? If EU model is correct
,

more eficient (note : stude eners)
.

Du dittere : "*[[i) = 0 .
577-6 = 0 .5778mit =

0 .
577/14

. 5) =0

96 . 8 +0577(14 . 5) = 103 . /
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1.3.2 Additive Errors Nonlinear Model

1.3.3 Generalized Linear Models

Imagine an experiment where individual mosquitos are given some dosage of pesticide.
The response is whether the mosquito lives or dies. The data might look something like:

Goal: Model the relationship between the predictor and response.

Question: What would a curve of best �t look like?

Example : exportio
Previous example had O linea trend

,
② Non-Gaussian errors .

growth model

Non-liner additive model : q(x,z) = B -exp( ,x)

Y,
=

g(2i , z) + Ei

ofte intreste in SirN18
, 04 but g(is)+= ML regard.::

in

① non-liner trend
,
② Gaussian errors

.

s
of response.

Regression : build a relationship between a parameter (mean) & covariates .

LM's : Stochastic element is additive my mean .

GLM's : Stochastic elemet is differt.

-
<Idoscage) Y (0: limes

,
1 = dies)

- -I
15 O

-
-R-mop , & a- ⑧ o

17 O

18 DI I-200

L .......24 A

i i --
dosage

-
dosage dead/alire .

sounds like regression !

Big differe : Yis are not continuous
.

They only take values of 0 or 1
.

Would we want a function tret only takes values in 90
, 13

.

It seems sensible to have a curve which takes values near 0 for low doses & near 1

for high closes and intermediate values for middle does
.

what does this curve represent? Pity .
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Re�ned Goal:

Let’s build a sensible model.

Step 1: Find a function that behaves the way we want.

# understanding the logistic function
# first, theta just equals x
x <- seq(-7, 7, .1)
theta <- x
y <- exp(theta)/(1 + exp(theta))
ggplot() + geom_line(aes(x, y))

# now, let theta be a linear function of x
theta <- 1 + 3*x  
y <- exp(theta)/(1 + exp(theta))
ggplot() + geom_line(aes(x, y))

Model relationship betwee predictor (dosage) t probability of success in response

Note : We don't observe the ability ,

(mosquito dies).

-

-

like the blue cure.

Consider the logistic function,

.
d

I--

As t > D
, p- 1 I

⑦

0 - -b
, p - 0 ~

0 = 0
, p = I-

By changing &
,

we can change location
, slope,

direction of this faction .

ut 8 =

Bo+ ,
2 =

p
=

.

Now he can connect probabilities to covnrinter !

We'd be done if he observed probabilities ,
but our response only takes values of 0 and1

.
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Step 2: Build a stochastic mechanism to relate to a binary response.

Step 3: Put Step 1 and Step 2 together.

Fitting our model: Does OLS make sense?

-

Recall the Bernoulli distribution

y = 5 up .
I p

wp . p .

binned
loin flip example w p

= 0
.75

. Flip coin
,

You will obse O (tails) or 1 (heads)
.

-

Aside : We could instead trunk about binomial den
,

which counts # of successes for a trials
.

X = Yi
,

Y, Bern(p) . X takes values in 90
,

1
, -., n3

.

P(X = k) = (i) p*(1 -b)
-

-

7. * Bernoulli (Pil t
pi= =

othe

I I

prob of ith

outcome of it

observation having
observation

success
Cobserved). Cunobsered) ·

G
: estimate Bo and Bos Find the "bast" estimates.

No
.

What else can we do? Maximum Likelihood !

↳ Find the parameters (B's) which make the density agace
best / data we observed.

perfor Bernoulli : f(yi ; Pi) = p (r-pi) -y :

>take yi's to estimate pi's .
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Consider the likelihood contribution.

So the log-likelihood contribution is

Recall, we said  was sensible.

Which gives us,

So the log-likelihood is

pic-pi) Y: (Yis are Porz] .

YilogPi+ (1-4,) log(1-pi)=y log:

-
(A)

Manipulating :

Pi+ piexp(8i) = expoi)

pi = (pi) exp(Oi).

↓ or I
piexp(- ) = 1-pi
-

~exsiee letore
-log (1+ exp(8:)) = log(1 -pi) (2).

Pluggin in (1) and (2) into (A).

-log (1+ explEi)) + Yit: (now in terms of Oi not Pil
m

notice now the term op tre data is "nice" for ME things.

e(vi)A
why? Because log-likelihood & "sensible" function pit in exploit

work well together .

Not a colcidue
.

(ii)
=EE-log(1+ exp(8i)) + Yit

=> e(p, !) = E-log(1 + exp(po +
,xi)) + Y: (Bot p,:)3
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To optimize?

##   default student   balance    income
## 1      No      No  729.5265 44361.625
## 2      No     Yes  817.1804 12106.135
## 3      No      No 1073.5492 31767.139
## 4      No      No  529.2506 35704.494
## 5      No      No  785.6559 38463.496
## 6      No     Yes  919.5885  7491.559

term estimate std.error statistic p.value
(Intercept) -10.6513306 0.3611574 -29.49221 0
balance 0.0054989 0.0002204 24.95309 0

null.deviance df.null logLik AIC BIC deviance df.residual nobs
2920.65 9999 -798.2258 1600.452 1614.872 1596.452 9998 10000

## data on credit default
data("Default", package = "ISLR") 
head(Default)

## fit model with ML
m0 <- glm(default ~ balance, data = Default, family = binomial)
tidy(m0) |> kable()

glance(m0) |> kable()

## plot the curve
x_new <- seq(0, 2800, length.out = 200)
theta <- m0$coefficients[1] + m0$coefficients[2]*x_new
p_hat <- exp(theta)/(1 + exp(theta))

ggplot() +
  geom_point(aes(balance, as.numeric(default) - 1), alpha = 0.5, data 

= Default) +
  geom_line(aes(x_new, p_hat), colour = "blue") + 
  ylab("Probability of Defaulting")

Must be done numerically .

/optimizilikelihood
L numerically .

-

data's are 0
,

I

brage .

So,
selpo)

,
sell il . Ho : :

= 0
= 1

,
2.

Ha : it o

n

e , ,) .
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Rose to 1

-> close
to 0

never outside of [0 , 13 - valid probabilities !
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In general, a GLM is three pieces:

1. The random component

2. The systemic component

3. A linear predictor

Remarks:

Example (Poisson regression):

Ex: Logistic Regression

probability dan from Y ~Binom (pil
action

generata

exponential family ·

mechanism of observed data
-

-

>

lintation I
A function relating the parameter I pi =

= I (o)I transforming lines relationship

of interest (mean !) to 0 to be on a scole that makes
-

↑ sense for the prometer of intrest

[(y) = j(n) Note YinBern(pi)
"linking" linear relationship to mea .

-[YiS =pi

describing how o is a linear
O = XB . ⑦ -Cli function of predictor

variables.

① standard formulation denotes faction by % : p = G(t) = los .

-> =
= g(p) = log(p).

& Parameter of interest is still the mean
,
just like linear regression .

③ Theoretical reasons for exponential family ... relationship blu param of intrest a Variance .

->
for count data.

① Poisson (X)
.

③ 8 = X

& & = IDE) = exp(0) (x 0) .

↓

=
= log(x) .
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Consider a general family of distributions:

Example (Normal model):

some backgrounda
-

subfamily of exponential

family dsns that includes

Binomial
,

Poisson ,
etc .

f(yi ;ti , 6) : expo) + cli,e

=exp + cri;
- ]
- -

*

recall exponetic family o/ prometer &
= CA

, s -,
Es)

*

is of*** fam :

f(y ; E) = h(y)exp[,85()+j(y) - B(E)3
- e

*
**

assures Tilyi)= yi subfamily of exporoticl family ·

gr(z)=+i)
similar to single pacm exp family except disposion term

a(0).

E [Y:] =

M ;

flai ;mi ,
6)= ite(-)

.

log flyi ; Mi
,
6) = log(o) -

it

-- log(0) - With
-

- log(rto)-
Di = Mi

a: (D)= 62

bloi) = =

c(yi, /) = - log(6)- (depends on
or

,

not mil
.
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We can learn something about this distribution by considering it’s mean and variance.
Because we don’t have an explicit form of the density, we rely on two facts:

1. 

2. 

For ,

these will come up again later

<Thursday ?) ·

HW2 E when we talk about information matix
.

Using D:

: leg flyi ; ti , 4) = ala (bi-b(oil) .

information about the

=> E((Yi-b(0)] =8 => bloi)= = [Yi]
.

-
mean is contained in boi

.

E
. g .

Normal modet ~from
form

b(vi)= =7 b(i) = 0: = Mi

Using ( :

logf(wijti,p)= => E(orf(iji ,]=!
->[) = [la(--b'(oil]Y = at = [14: -- [4:3)

Engel + avar(i) = 0 => var(4i] = a: 107b" (oi) .

-
Variance can depend on i

- Variance Var[4i] positive => b"(oi) positive & values of Ei

= bloi) strictly convex

b8i) monotor increasing => b
"

exists
.
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Example (Bernoulli model):

log flyi;Pi) =

Yi log pi+(1-yi) log(1-pi)

⑧
-

-  erpil.)
-

⑰
comparing to general form :

E

8
= by attentin+

id

a=(0) = 1

((y,,%) = 0

b(ti) = -log) 1 - pi)
=- log(1 - oi)
= log) expoi)
=log (1+ expl8i)) .

b"(8)= Fexpri) eoi) =

pi = z[7i)

a,y)b" (i)= (- (Hexploi)) expltil exploit (It
exploi)) explain

=(1+ exp(8i)) exp(oi) - exp(oi) exp(ti)
-

1 + exp(fi)

=exp(til

expstil
= oil Fespe
= Pi(1-pi) =Var(7i)



40 1 Likelihood Construction and E…

Finally, back to modelling. Our goal is to build a relationship between the mean of  and
covariates .

Example (Bernoulli model, cont’d):

choose B : g (E [Yi])

what to choose for ?

E[7i) = g"(e)

wa
merexists

we know E[7i] = b18i) ↑

-> b(0i) = (e) OR 0:
=

B(g"(xif)

If we choose =

b
,

then this will clean
up nicely ! = .

en

"canonical" or "natural" link function.

- log-likelihood is

e(f , 144, :=) = Ein (a) + . Chi
, 43

.

b(0i) = log ( 1+ exp(ti))

b(0i) =

)

1 + exploi) .

at y = b = b (ti) =eIN

=[Yi]
IG

Pi

(same as before) .
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1.4 Marginal and Conditional Likelihoods

Consider a model which has , where  are the parameters of interest and 
are nuisance parameters.

One way to improve estimation for  is to �nd a one-to-one transformation of the data 
to  such that either

The key feature is that one component of each contains only the parameter of interest.

e

not what we are interested in performing infsence for
·

When dimension of En is large, MLEsof r cam be biased for small samples and

inconsistent in large samples .

fq(ziE) = f);E)l)"marginal"

alterna OR

fy (4;2)
= fr)k)r ; En)tEz)"conditional"
-

nuisance

↓ proctors.

either way , looking to split density into a piece that doesn't depend on 2

-
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Example (Neyman-Scott problem): Let  be intependent normal
random variables with possible different means  but the same variance .

Our goal is to estimate . Should we be able to?

Following the usual arguments,

Yig ,

=
-

n
, j=4

,
2 N(Mi

,
67 :

A r
- e

1 common variance.

n groups ove thous group
mean

per group

& = (Mic - -

> Mna 64
-

-
n+1 parameters

Yes: lots of groups !

No : only 2 obs per group

Usual asymptotic assumptions as n grows

Here as a grows ,
#ofy grows-> # parameters grows.

= 94 ,-2) (Yic - min y

- it ES()+ (i) y
equivalent

= En (Yin-Yiz)
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A reworking of the data seems more promising. Let,

=(t (4-Yin)]
crid)

= ↑ E((Y -Yiz)]
=

I = [(in-vi) - (Yiz-Mi)3]
=I E[(Tin-M,)-2(7i -Mi) (Yiz -Mi) + (4iz-ri)2
=

(62 - 0 + 67

= 8 !

me
-> I by WLLN !

So as
n- x

,

"

This seems bad .

Happens because the # of nuisance parameters grows as a grows .

Because Yij are Gaussian,

Vi ~N(0,62) and WiNN([Mi , 64 . Also, Vit Wi !

(i) = < ][i] => var([w3)= C =][ ! i) [ ] = 6- 18.
consider the density of VEW :

Juww; 04 Mr-Mn) E fr(iofar(W ; is -, Mn ,
64

men

no nuisance parameters'

"Vi
=> e(6(7) = - nlogt - nlogo-Iti= 1

) =

- + Vi => Erie EV

A marginal likelihood approach is simple provided you can find a statistic V whose den

is free of the nuisance parameter !
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For conditional likelihoods, we can often exploit the existence of suf�cient statistics for the
nuisance parameters under the assumption that the parameter of interest is known.

Example (Exponential Families): The structure of exponential families is such that it is
often possible to exploit their properties to eliminated nuisance parameters. Let  have a
density of the form

then

Thus, exponential families often provide an automatic procedure for �nding  and .

-

Let T
;

be suficient for a nuisance parameter (Mil

ten the condition distribution of In data given I: (T
, ..,Tn) doesn't depend on the unisance parameters

.(I)

> We can look for the conditional den of datal

↑

If M
=

(E, E)
, eatistics

(Th'm
2.b

f(yiEr
,E) = h(y) exp5 [0 ,

Wi + [tz; V;
- ACE

, Ez)]py104)
Then the conditional den of given I is exponential family of the form :

5(wI2jE) = g(w) expSaiWi - Ar(EDI
I

a
conditional density

te
doesn't depsd on Es :

D
-
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Example (Logistic Regression): For binary , the standard logistics regression model is

and the likelihood is

E

Pilai.)" El-Piki)

= "Enekg
=> Y: (x3

+(1 + exp(2)

=

a(X ,
1) exp(,: 4) .

=> 5
= xij4; j =1

... p are sufficiat for this exponential family model
.

Suppose Op= Bp is the parameter of interest and the others are nuisance parameters
.

-> W= T = ZY=
,
KikYi and U = CT

, .., Tristatis
..., To)

↑ ote
L

and the conditional density PCTp = tal Tr= t
, .., Ta , thisT

=

tk+1 - - Tp = tp)
:

=t ... tp) exp(tic) Ejan depe =
en

maximize this
-

Entis-stkiskstip)exp(,) t get PK
*

/
Here exists fast computational waysto compute .


