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1.5 The Maximum Likelihood Estimator and the
Information Matrix

We have now talked about how to construct likelihoods in a variety of settings, now we
can use those constructions to formalize how we make inferences about model parameters.

Recall the score function

Generally, the maximum likelihood estimator  is the value of  where the maximum
(over the parameter space ) of  is attained.

Under the assumption that the log-likelihood is continuously differentiable, then

But not always (?!).

-

fi

parameter estimation, hypothesis tests ,
confidence intervals.

we often restrict attention to likelihoods that are continuously diffrentiable wrt 1.

inse ,
S(E)

= &

This function is :(ie-

I Iwonder because it

depends on the dath
1
.

!
-

-

Emiz = argmax
(IE11) <=> L(Eme11)= (1817) KEEN

S(Emz) = 0 .

-
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Example (Exponential threshold model): Suppose that  are iid from the
exponential distribution with a threshold parameter ,

for .

Consider the arti�cial data set .

-

strict.

8

I((u)7) = i f(4;;n) = , exp(- (yi -n)) #(M < y, ) .
= exp(- ny) exp(nn)

!
I# (n< 4,) .

e

#(n<y(, )-

=> the likelihood= 0 for my value of MIYcs Yes = min3Y,...,Y .

⑧

Y() = 2 . 23
M =

1

Mm2Z
=2 , 23

,
right. ((2 -23(1) = 0 =>()( (Mme(i) ((m/y) FMAR . AND
-

7 Yes. S(umz) =O because (Umiz) not diferatiable

S If replace uxy with May in f(y ; a) thin (A) will hold by not score equation .

here
.

to se this consider maximizing (u(m17)= (n)" Fy(4thin) - E(t-h ; n)} for "small enough" valueoth .

the maximize lim (n(M11) . -> Umi Yas
n- ot



48 1 Likelihood Construction and E…

1.5.1 The Fisher Information Matrix

The Fisher information matrix  is de�ned as the  matrix where

In matrix form,

Rest of this section : assume support doesn't depend on the parameter value.

y ; inf(y ;=) dimensionof

Y
=[do; logf (Yr ; 133%; logf (11 ; )3]

Is this random
?

Notice : this is the "information" in one observation . (note Yp)
.

No ! it's
an
-

expectation'

=[(+ (egf(y
, j=))(f(y, ;E))]
e

ne
row rector

column
rector . I

Let s )y ; =) : So= logfly ;1)3 column rector.

4

score contribution .

tre ICE) = E [s(4riE)s (Y : ElT] .

I
Again this depends on 1 observation (not n of tem).
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Fisher information facts:

1. The Fisher information matrix is the variance of the score contribution.

2. If regularity conditions are met,

-

Why ? E [S(Y , =17 = 0

Fact ① from GLM section
.

Big O ↑defined
wot a single obsanction.

Result
D

. ④
e

I A
based on n

unbiased
inferse fister information

.

observations.

* "approximately
distributed

"

-> if n is large i (Ems -) iN18 , I(E)")

or
,
Enns- NC1 , I(E))

Ene Y N(E , [nICH3")

we will prove
this result for b = 1

.
(Inter).
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3. If , then any unbiased estimator must have variance greater than or equal to

4. The information matrix is related to the curvature of the log-likelihood contribution.

-

&

cramer-Raw lower bourd .

If b> 1 : If I is the asymptotic coumatrix of my other consistent estimator
,
then

I- ICO) is positive definite.

e

Hession

I(E) = =[(8+ (of(4,;t) (08logf(Y,jE))]

= - [logf(4 ,;E)] - assuming his trice diffatiable and

using fact & from GLM section .

= E(- Es (Y :El] curt another way) .
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1.5.2 Observed Information

The information matrix is not random, but it is also not observable from the data.

Let  be iid with density . The log likelihood is de�ned as

taking two derivatives and dividing by  results in

-

You need knowledge of the distribution to calculate it

Would be great to use ICEne)= ES-tlogf(Y,; )1 =Emily

-

loy ((117) = Elogfy (7:;1)

detie (7
,
6) = E

,
E-tlogf, (4:;El

&)

arrage
curvature contribution :

If ICE) = EE- tlogf(7, iE)] ten IC7
,
EI would be an abvious estimator

x if he know I *

= ICI , Ens) seems like a natural estinator for ICE) .
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De�nition: The matrix  is called the sample information matrix, or the
observed information matrix.

Why use  as the basis for an estimator, rather than

?

doesn't apaesiee-TonoICE) is the expected curvature of the log-likelihood surface from one oberation
-

the obshed information nECI; Enzz) is from a sample of size n and does depend on sample size .

Recall Once " N(Ec [rI(0)3) (A)
to get approximate variance of Enz for sample of size

,
we need the matix to depend on n .

the hessian (curvature)& Omz is readily available from optimization methods =>

nE(7
, Emis) can be computed easily .

Alternatively could use E
*
(1
, E)= i 8+logf (i,173508 logf (7:;-3]

(because E[I* (1,E1]= I (E) also)
,

This is not typically used unless specification of I is less clear (model misspecification) .

(E17 ,E) is more eficiat)

we will see this again later.
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Now let’s prove the asymptotic normality of the MLE (in the scalar case).
b= 1e

-

Useful facts : for Xis-cXniid Vary ,
= 6

,

WLLN
: Xn = -PE (X) .

CLT
: F (In - Ex

,
) = (t x: -Ex, ) -> NC0

, 64 .

e
Let y: vidIy)y ;f) and Eme is such that It)/-ne"I

S(8mz)
.

It SIA) = (A) = E
,

logf(y:;#

=Es /Y:, t) where s (yi
,
)= gf(7:; f)

we know (s(Yr
,
8)] = 0 and Var[s(y

,
07] = I(t) and Es/Y:,#3

,

are ind rov's

=>

(( S(t)-0) - NC0 , FIE)) by CLT

> (nI(r)"S(o) -Z
,

ENCO, D (A)

secondly , let 5(8)=-ly:;t =- Eats(Yi ,H .

Ten E[-s(Y,,H] = ICA).
de

ne

sum of id
R
.

V
.

's

=> I J(E) ->PICo) by WLLN S n(r) ->"ICA* (**)

So far we have
considered the true value &. Let (A) be sufficiently smooth to allow for Taylor Expansion .

↓

assumption .

0 = S(8mz) = S(0) + (Emt-o) > Emmett - Slot .

=

5(0) S(o) .
-

ths
,

iwantenvoi lol is "EnI5" he
en ne

IO) -> Z (A) .

-PICE)" (**)
,

d
-> NC0, 1) by Slutsky's thin/

Nate the argument to replace I(v) by ICAmne) in the asymptotic result is justified by convergence
in probability .

The argument is generalized to & by interpreting the score as a bylvector
,
ICE) as a bybmatix , z ~Nx(, Fb) .


