
Methods of Maximizing the Likelihood
Maximum likelihood estimation requires maximization of the log likelihood

.

In most cases
,

this means taking derivatives and solving likelihood equations

S(E) =
+ (A) = 0

.

Sometimes we can do this analytically (Yay ! ).

When an analytical solution doesn't exist
,

we have options :

-> Standard optimization methods like Newton-Raphson
Cor fancy onle like gradient deccet)

.

-> Profile likelihood .
(later) .

· EM algorithm (today) .
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1 EM Algorithm
Approach solving the likelihood equation via viewing the observed data  as incomplete
and that there is missing data  that would make the problem simpler if we had it.

Example (Two-Component Mixture): Suppose  are iid from the mixture density

where  and  are bivariate normal densities with mean vectors  and  and variance
matrices  and , respectively. Thus, the parameter vector  and
the likelihood is

"Expectation" a maximization"

↓

-

e

↳ sometimes it is actually missing data

↳ others just additional data we wish we had
.
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Actually this log likelihord has maxima on boundary of the parereter space=> not well-behaved
.
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Let’s try to maximize the likelihood

library(mvtnorm) ## multivariate normal

p = .6
mu1 <- c(0, 0)
sig1 <- matrix(c(1, 0, 0, 1), ncol = 2)
mu2 <- c(1.5, 1.5)
sig2 <- matrix(c(1, .6, .6, 1), ncol = 2)

## sample from the mixture
n <- 50
z <- rbinom(n, 1, p)

y1 <- rmvnorm(sum(z), mean = mu1, sigma = sig1)
y2 <- rmvnorm(n - sum(z), mean = mu2, sigma = sig2)  
y <- matrix(NA, nrow = n, ncol = 2) ## observed data
y[z == 1, ] <- y1
y[z == 0, ] <- y2

df <- data.frame(y, z)

## plot data
ggplot(df) +
  geom_point(aes(X1, X2)) +
  ggtitle("Observed (Incomplete) Data")

ggplot(df) +
  geom_point(aes(X1, X2, colour = as.character(z))) +
  ggtitle("Complete Data")

~

S
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Parameter Truth MLE1 MLE2
0.6 0.6771 0.6634
0.0 0.0307 0.0050
0.0 -0.0512 -0.0281
1.0 0.9757 0.9757
0.0 0.2178 0.2267
1.5 1.5597 1.5744
1.5 1.4815 1.4859
1.0 0.7161 0.7220
0.6 0.2679 0.2436

# loglikelihood of incomplete data--no knowledge of z
loglik_mixture <- function(par, data) {
    p <- plogis(par[1])  # p guaranteed to be in [0,1]
    mu1 <- c(par[2], par[3])
    sig1 <- matrix(c(exp(par[4]), par[5], par[5], exp(par[4])), nrow 

= 2)
    mu2 <- c(par[6], par[7])
    sig2 <- matrix(c(exp(par[8]), par[9], par[9], exp(par[8])), nrow 

= 2)
    # note:  exponential guarantees the diagonal elements are 

positive, but
    # nothing to guarantee matrices are positive definite. (Could do 

square root)

    out <- log(p * dmvnorm(data, mean = mu1, sigma = sig1) + 
                 (1-p) * dmvnorm(data, mean = mu2, sigma = sig2))
    return(sum(out))
}

## optimize from different starting values
mle1 <- optim(c(0, -.2, -.2, .5, 0, 2, 2, .5, 0), loglik_mixture, 

data = y, control = list(fnscale = -1))
mle2 <- optim(c(.405, 0, 0, 0, 0, 1.5, 1.5, 0, .6), loglik_mixture, 

data = y, control = list(fnscale = -1))

ok
,

not great not
terrible.
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Fitted results:

This seems pretty good… can we break this with initialization?

## [1] -137.7964

Parameter Truth MLE3
0.6 0.9873
0.0 0.0000
0.0 0.0000
1.0 1.0000
0.0 0.0000
1.5 1.8067
1.5 3.3712
1.0 0.0000
0.6 0.0000

# Centered the second mixture component at a data point, and shrink 
# variance, so normal is super-concentrated around that point.
loglik_mixture(c(.6, 0, 0, 0, 0, y[30, 1], y[30, 2], -50, 0), data = 

y)  

mle3 <- optim(c(.6, 0, 0, 0, 0, y[30, 1], y[30, 2], -50, 0), 
loglik_mixture, data = y, control = list(fnscale = -1))

Yikes .

- that's bad
.
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What would change if we were given the complete data, where ?
-

now he know cluster assignment!
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So Mrt is the sample mean of the obserations from the first dusity (DNA).
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if we knew which mixtre component the data came from
,

our life would be easy ...
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Consider the complete log-likelihood:

We could consider the ’s as “weights” which represent our current believe in which
density each datum come from.

Given what our belief is in the weights of the data, what is our estimate of the model
parameters?

If we were given this information (tre complete datal our belief weights are OS and As
.

Instead have urrent belief based on model parameters
.

↑
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This is the basic intuition for the EM algorithm. We will view our data  as incomplete
and imagine there is missing data  that would make the problem simpler if we had it.
The EM algorithm then follows:

Example (Two-Component Mixture, Cont’d): The EM algorithm for the two-component
Gaussian mixture model is

Your Turn: Implement the EM algorithm for the two-component mixture model on our
example data.

don't actually have z!

I need to maximize something
W

⑦ Write down joint likelihood of tre "complete" data (Y
, z) , DcCE11,

E) that is only a function ofEct.

-> inditional

expectation !② E-step : compute conditional expectation of loyEl, 2) given I
, assuming parameter is wor

->
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E
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.

in treitration.

we
will this & M-step : Maximize Q(E,E

,
1) wrt (E fixed)

.
why

prote bit :
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i
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Y

,
7) .

repeat 238 until conregene (values of E and fcrtR not changing much)
.

Cinitialed) Start with Eco
,

for v = 0
,

1
,

2
, ...

I① E step
: Q(0, E y) = E
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② M-step
:

see
page 7.
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1.1 Convergence of the EM algorithm

We will show that .

We know .

Assume we observe , then

So, in order to show that , this is the same as

N *

In other words
,
each step of the EM algorithm leads to an improvenct in the log-likelihood

roll
.

If the likelood is wellobehaved ,
it will achieve the Mrt

,
otherwise it will achieve a local maxima

↳ bounded
,

unimodal Lif there is one)
.

y =
obsored data

z
=

hidden defin of conditional density .

truefany y ,
z

= fg(yjz) = initii just rewritten (not clear why yet) .
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complete data Y,

e
e holds for any z !
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Step 1: Show that  is maximized when .

Recall: Jensen’s Inequality. A function  is convex if . Then

where  is a real-valued integrable function.
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Step 2: Find a  that will optimize .
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Example (Two-Component Mixture, Cont’d):

The EM algorithm allows us to obtain , the parameter estimate which optimizes the
algorithm.
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1.2 Variance Estimation for EM estimates

The EM algorithm �nd the MLE, but it does not automatically produce an estimate of the
covariance matrix. Why not?

There are several options to estimate the variance.

1. Bootstrapping
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2. Louis’s Method
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1.3 Another way to cluster: K-means

Goal of clustering:

Methods for clustering include hierarchical and non-hierarchical, algorithmic and model-
based.
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K-means is a simple and elegant approach to partition a data set into  distinct, non-
overlapping clusters.

The -means clustering procedure results from a simple and intuitive mathematical
problem. Let  denote sets containing the indices of observations in each cluster.
These satisfy two properties:

1. 

2. 

Idea:
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The within-cluster variation for cluster  is a measure of the amount by which the
observations within a cluster differ from each other.

To solve this, we need to de�ne within-cluster variation.

This results in the following optimization problem that de�nes -means clustering:

A very simple algorithm has been shown to �nd a local optimum to this problem:
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Questions about the algorithm:

1. How do we de�ne distance?

2. How do we choose starting values?

3. How do we choose ?

Compared to the Gaussian mixture problem,


