
Methods of Maximizing the Likelihood
Maximum likelihood estimation requires maximization of the log likelihood

.

In most cases
,

this means taking derivatives and solving likelihood equations

S(E) =
+ (A) = 0

.

Sometimes we can do this analytically (Yay ! ).

When an analytical solution doesn't exist
,

we have options :

-> Standard optimization methods like Newton-Raphson
Cor fancy onle like gradient deccet)

.

-> Profile likelihood .
(later) .

· EM algorithm (today) .
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1 EM Algorithm
Approach solving the likelihood equation via viewing the observed data  as incomplete
and that there is missing data  that would make the problem simpler if we had it.

Example (Two-Component Mixture): Suppose  are iid from the mixture density

where  and  are bivariate normal densities with mean vectors  and  and variance
matrices  and , respectively. Thus, the parameter vector  and
the likelihood is

"Expectation" a maximization"

↓

-

e

↳ sometimes it is actually missing data

↳ others just additional data we wish we had
.

Infinite
or

"Wish
he

had
"

how
be

would

proced.

[pf
,(ij , 2 ,

) + (r) falt;;, [2)]

-> 11p ,12
,
2

,52) = E
,

log Epf ,
(i ;M, , ) +(r-fal7i;z,

273

...
and we're stuck.

We cannot at nice expressions for Time En
, Mut

Kal
,
z .

Actually this log likelihord has maxima on boundary of the parereter space=> not well-behaved
.
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Let’s try to maximize the likelihood

library(mvtnorm) ## multivariate normal

p = .6
mu1 <- c(0, 0)
sig1 <- matrix(c(1, 0, 0, 1), ncol = 2)
mu2 <- c(1.5, 1.5)
sig2 <- matrix(c(1, .6, .6, 1), ncol = 2)

## sample from the mixture
n <- 50
z <- rbinom(n, 1, p)

y1 <- rmvnorm(sum(z), mean = mu1, sigma = sig1)
y2 <- rmvnorm(n - sum(z), mean = mu2, sigma = sig2)  
y <- matrix(NA, nrow = n, ncol = 2) ## observed data
y[z == 1, ] <- y1
y[z == 0, ] <- y2

df <- data.frame(y, z)

## plot data
ggplot(df) +
  geom_point(aes(X1, X2)) +
  ggtitle("Observed (Incomplete) Data")

ggplot(df) +
  geom_point(aes(X1, X2, colour = as.character(z))) +
  ggtitle("Complete Data")

~

S
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Parameter Truth MLE1 MLE2
0.6 0.6771 0.6634
0.0 0.0307 0.0050
0.0 -0.0512 -0.0281
1.0 0.9757 0.9757
0.0 0.2178 0.2267
1.5 1.5597 1.5744
1.5 1.4815 1.4859
1.0 0.7161 0.7220
0.6 0.2679 0.2436

# loglikelihood of incomplete data--no knowledge of z
loglik_mixture <- function(par, data) {
    p <- plogis(par[1])  # p guaranteed to be in [0,1]
    mu1 <- c(par[2], par[3])
    sig1 <- matrix(c(exp(par[4]), par[5], par[5], exp(par[4])), nrow 

= 2)
    mu2 <- c(par[6], par[7])
    sig2 <- matrix(c(exp(par[8]), par[9], par[9], exp(par[8])), nrow 

= 2)
    # note:  exponential guarantees the diagonal elements are 

positive, but
    # nothing to guarantee matrices are positive definite. (Could do 

square root)

    out <- log(p * dmvnorm(data, mean = mu1, sigma = sig1) + 
                 (1-p) * dmvnorm(data, mean = mu2, sigma = sig2))
    return(sum(out))
}

## optimize from different starting values
mle1 <- optim(c(0, -.2, -.2, .5, 0, 2, 2, .5, 0), loglik_mixture, 

data = y, control = list(fnscale = -1))
mle2 <- optim(c(.405, 0, 0, 0, 0, 1.5, 1.5, 0, .6), loglik_mixture, 

data = y, control = list(fnscale = -1))

ok
,

not great not
terrible.
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Fitted results:

This seems pretty good… can we break this with initialization?

## [1] -137.7964

Parameter Truth MLE3
0.6 0.9873
0.0 0.0000
0.0 0.0000
1.0 1.0000
0.0 0.0000
1.5 1.8067
1.5 3.3712
1.0 0.0000
0.6 0.0000

# Centered the second mixture component at a data point, and shrink 
# variance, so normal is super-concentrated around that point.
loglik_mixture(c(.6, 0, 0, 0, 0, y[30, 1], y[30, 2], -50, 0), data = 

y)  

mle3 <- optim(c(.6, 0, 0, 0, 0, y[30, 1], y[30, 2], -50, 0), 
loglik_mixture, data = y, control = list(fnscale = -1))

Yikes .

- that's bad
.
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What would change if we were given the complete data, where ?
-

now he know cluster assignment!

fyz(y ,ziE) = (pf/7,1,)
*

-)falz , a)
*

=> p, x z,2,52(7, z) = EEZilagf . (7i;[i) +(r-zi)lagfz)7i;z,
[e) + zilogp + (-zi) log(1-p)3 .

17,z) = E
, zi in logf, (7:;1 ,; 2,) =-logzi-I log det[,

-

0M I(zi-r)" E. (1: -r,
)

=>
: ;,2)

=

-[,(7; -u, )
OA

plugging in :

↓ziti,z) = -z: :-) * E met
Exis&,

So Mrt is the sample mean of the obserations from the first dusity (DNA).

The other Gaussian parameter estimates are also exactly what you
think :

1

A
,
=
↓ Ill-zi7i

, Eine ZiCti-much (1i-ne)
,

simila for Ezimut
.

↑Ez ,=03 i =

Now pi

1,
z)

= - (l-z: o M
also exacta

ah
Ezi

zi-Zi= up
- pzi = Pae= it-

So
,

if we knew which mixtre component the data came from
,

our life would be easy ...
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Consider the complete log-likelihood:

We could consider the ’s as “weights” which represent our current believe in which
density each datum come from.

Given what our belief is in the weights of the data, what is our estimate of the model
parameters?

If we were given this information (tre complete datal our belief weights are OS and As
.

Instead have urrent belief based on model parameters
.

↑
based on current knowledge of

model parameters

This seems circular
.
(and it is -> itsatie procedure) .

↑(k+1)

El - belief weights is &
-

n u

" "M"

+ Wildinn

i = 1

(k+

=
S

,

(1-w!)7 :
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E
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~
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:

wis
Wil (4: -) (7:-)E

,

M
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M
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This is the basic intuition for the EM algorithm. We will view our data  as incomplete
and imagine there is missing data  that would make the problem simpler if we had it.
The EM algorithm then follows:

Example (Two-Component Mixture, Cont’d): The EM algorithm for the two-component
Gaussian mixture model is

Your Turn: Implement the EM algorithm for the two-component mixture model on our
example data.

don't actually have z!

I need to maximize something
W

⑦ Write down joint likelihood of tre "complete" data (Y
, z) , DcCE11,

E) that is only a function ofEct.

-> inditional

expectation !② E-step : compute conditional expectation of loyEl, 2) given I
, assuming parameter is wor

->

I actually unretvalue

④(E,
E

,
7)

= Ign [log( (E11,717] = Sloy L
,
(817

,E) fzplEl1 ,
EM) da

.

in treitration.

we
will this & M-step : Maximize Q(E,E

,
1) wrt (E fixed)

.
why

prote bit :

is
what

we

want
in

i
. e . f(vt) =

argmax
Q (E,

Y

,
7) .

repeat 238 until conregene (values of E and fcrtR not changing much)
.

Cinitialed) Start with Eco
,

for v = 0
,

1
,

2
, ...

I① E step
: Q(0, E y) = E

Em [loyLc (E17
, z) 11] = Swi logf, (icM(Y) + (r-wi) lagfz(i ,e,) +wileg

CrwLey(1-p*3
.wi Eqr(zi17) = p"fult;i[,"

-

plf , 17i; , , !)+ (r-pfa(y;;M! )

② M-step
:

see
page 7.
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1.1 Convergence of the EM algorithm

We will show that .

We know .

Assume we observe , then

So, in order to show that , this is the same as

N *

In other words
,
each step of the EM algorithm leads to an improvenct in the log-likelihood

roll
.

If the likelood is wellobehaved ,
it will achieve the Mrt

,
otherwise it will achieve a local maxima

↳ bounded
,

unimodal Lif there is one)
.

y =
obsored data

z
=

hidden defin of conditional density .

truefany y ,
z

= fg(yjz) = initii just rewritten (not clear why yet) .

fyz(7 , = i)LCE(y) =

by)y;+) =
-

Cit ind
, product of univaite desities)

tzy(E17 iE) log-likelihood ob conditional log likelihood
complete data Y,

e
e holds for any z !

- elEby) = log fyz (7 :EjE) - log fzx(zy-iE)
= (1,) - 10/2E13)

=> take expected values

*wrt zlyjEli
Setly) fzy/Ely ,8) dz = Slogfyz(y,z ;El fzilEl2iE)dE-Slogfzy(ElyiE) fz(Ely; EM)dz-

--e(01) Sfz(zly; E()dE=

e(01) =
E,Erm) = Al CE, M),

*Y

(EM, E") - H(:") = Q ( *M)-HCE E")O
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Step 1: Show that  is maximized when .

Recall: Jensen’s Inequality. A function  is convex if . Then

where  is a real-valued integrable function.

- *

i
.
e

.

H(E
, EM)

= HCE
,
EM) for any .

=) I(Sq()+(x)dx) = SE(g(x))f(x)d

where Xef
.

fact :
- log is convex

RI-
Consider HCE"

, EM)- H(E , EM) wis this is positive I E .

HCE
,
*) : Slog( 5

z
= 17 ;E)) fzy)E 12 ; EM) dE

-> HC8"I") - H(E ,
E) = S (logfzCEly; E")-logfzy (ElyiE)) fzly(Ely : -)da

=S-log(:Er) fz(ly ; Ei)da

-=> -log) + (17; )d2

=-log 3 S fzylEly ;=) dz3
= 0

=> H(E4,
EM) = H(E,

EM) FE/

this allows us to only focus on maximizing & When performing the EM algorithm !
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Step 2: Find a  that will optimize .*

Recall good is to + Sit .

(E
***

(5) = I (E
"(7)

.

And M(E17) = Q(E, EM) - HCE , EY) .

It
+=

argmx
&(E,)

We know H((
,
EM) = HCEM

,
EM) because tre all E .

↓ Q (g
,

EM) = Q(EM,E) by optimization .

So (E" (y) = QCE"
, EM) - HCE *)

I Q) ***,**) - H(EN
,
EM) = &( ***y)
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Example (Two-Component Mixture, Cont’d):

The EM algorithm allows us to obtain , the parameter estimate which optimizes the
algorithm.

Q
,
EM)=Sy, ; E) fzi)Ely ; E") dz .

for the Gaussion mixtre,
he know the complete log-likelihood :

logfyz(y,ziE) = Szilogf,
(4i ; M

, [i) + (l-zilogfz (Yi ;Mz
,
2

i
) + zilogp + (-zi)log(r

To get the conditional dusity,

fy(z17 ;g): fz(EilziiE") .

fay/tili ;Eir) =
zi ;E) complete dusit

Sy (4:; E) observed density .

-!"]
*

[C-p)fali;
,]E

:

z:

other -"f
, (i;,,, ) + (1-Y) fa(Ei ; 2

, Es~(r))
volre

P(Zi =11y=yi)=!! · dette the

-"f
, (i;,,, ) + (1-Y) fa(Ei;

,
! (

=> Zilti, Bern (W;) .

=> alt,) = En yz(ti , zi ; El] and En (il] = g(D, + g(0)(1 -
w!)

.

R

tuke
dierities

, - !
"

[logf ,
(i;2) + leg+ (I-w!) [logfz(i;z[z) + log(1-P8]

solre
.

Set
=

0

↳ which yields the intuitive update formulas from before !

so "plugging in the weights" makes sense from an optimization standpoint example .

In general can't always separate EM in this way for Q .

If likelihood is "nice" = Eure
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1.2 Variance Estimation for EM estimates

The EM algorithm �nd the MLE, but it does not automatically produce an estimate of the
covariance matrix. Why not?

There are several options to estimate the variance.

1. Bootstrapping

-> likehod is well-behaved
.

could'nt we just look at the curvature of the optimized surface?

No
.

We are optimizing Q
,

which is not the log-likelihood ! (G-H).

> We can't rely on information results without computing the Hession of the leg-likelihood.

(which may be hard)

(we will discuss bootstrapping in depth later in the coursel

A simple procedure is easy to imagine :

1 . Find OE from the original data 1
:

Mic--, In

2
. Resample data with replacement to obtain bootstrap samples (sample from empirical

ne
# of bootstrap samples dSn) .

y
* b

=

Y,*
Y

. . . ,

** for b =1,..,
B

Find * for each 1*

3 .

Use *In's to get bootstrap CI for Eam .

↳ percentile bootstrap.

↳ -based

↳ BC A bootstrap.

Straight forward
,

easy .

can be computationally expensive (need EM b= 1
, ..,

times).

↳ could be done in parallel to case the burden .
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2. Louis’s Method

l(817) = Q (E, M) - HCE,
&4) tre for any E

So in particular &(117) = Q(EcE)- HCE, E)

= - l"(17) =
- " CE,E) +H"(8,E) .

(derivatives urt t freguet)8

M
nI(1 ,1)

from before .

assuming
integration observed information="complete information" - "missing information"

difuatistic
order

and -~
se

interchangeable
-

Q

"

(E
,E)

=

- Ezy(l" (E17, z)] =
- S &" (E17 ,z) fzy (14 :=) dz

somewhat similar in form to fisher information (except for din expectation is with .

similar statement about #"CE,1) .

So to get CIs
,

need Q"CO
,8) and H " C0

,
8) :

Q"CF
,0) is the curvature of the optimization surface => can often out numerically.

H "C0
,
8) = Var[z1y:E)] not fER (again wh fact ()

I because H "Cr
,
H) = (a i 1

;) dE

A MC estimate of HiCE,
O) is thus the sample variance of

zlyio

of asample of Z's imputed from
El

Other options See Givens ? Hreting Section 4
. 2 .

3

- supplemental EM

->

Empirical Informatio
-> Numerical difeetiction A get Hessian

,
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1.3 Another way to cluster: K-means

Goal of clustering:

Methods for clustering include hierarchical and non-hierarchical, algorithmic and model-
based.

Find an optimal grouping for which tro observations within each group are "similar"

but clusters are "dissimilar" to each other.

cluster analysis vs .

Discriminant Analysis (classification)

Cunsupersived) Isupervised tak)

&
- assign new point
L

- to class

...
... ...... &

d

② Id · ·
&

d

goal : prediction
goal : discover

structure

hierarchical : proceed by going from -> I clusters (ar 1- >n)

non-hierarchial : model-based (finite mixture of Normals)

3 both
work for Set is

algorithmic S K-means) but can be applied to

- differt #S.-

Not an exhaustive list.
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K-means is a simple and elegant approach to partition a data set into  distinct, non-
overlapping clusters.

The -means clustering procedure results from a simple and intuitive mathematical
problem. Let  denote sets containing the indices of observations in each cluster.
These satisfy two properties:

1. 

2. 

Idea:

- -

first specify how may clusters (K)
,
Pen Kens assigns each observation to one of K clusters

.

Eg . Clustering n
= 900 obsuctions into K clusters usiy =2 features.

-

e.g if ossi is in cluster k
,
it CK

C
, UCU ... UC = E1 , -yn3

each obs belongs to a cluster

2, 1(k
= 0 F kIk"

clusters are non-ovelapping -

"Good" clustering is one for which within-cluster-variation is as small as possible .

-

↳ clustered data are "similar"
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The within-cluster variation for cluster  is a measure of the amount by which the
observations within a cluster differ from each other.

To solve this, we need to de�ne within-cluster variation.

This results in the following optimization problem that de�nes -means clustering:

A very simple algorithm has been shown to �nd a local optimum to this problem:

AsW(C) .

-

The we want to

minimize d WIC,3
Cr , -- K

i
. e . partition data into K clusters sit. totatintin claser rniation is minimized.

men

many wayt .

Most common : squared Euclidean distance .

W(C) = Tile ,

Kij-weng

objective function.

-

-
P

mineiin , -sin, 3
This is very hard to solve exactly ,

-K wags to patition a obs into Kalusters!

-prettygood Solution"

1
. Randomly assign a number from 1 to K to each abstration (initialize cluster assignments)

.

2 . Strate until cluster assignments stop changing :

-> recor of the
ae

(a) for each of the K clusters
,

compute cluster centroid
-

(3) Assign each obs to best controid cluster
.

& euclidea distance
.

-
This algorithm is quaranteed to decrease the value of objective function at each step. W

Clustering depeds on initial Crandom) cluster assignment. can't get
here !

- run the algorithm multiple times from diffract initial configurations and choose custring/
smallest objective function .

still need K ...
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K-means illustration :

① I j

X

V

d

S
&

&
-

... ↓P

desi -
I

0
& e

L

② Randomly assign

④

⑳ ⑱ ⑳

② *· ⑨
&

⑧

·

③ compute mediods .

&x

⑧ Dr

& ⑧·
⑧ ↳

&

a ⑧ &

④ Update
assignments

⑨ ⑫ ·
*⑦· ⑧~i

⑧ ⑧
& ⑧⑧

repeat $3 until clusters stable ·
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Questions about the algorithm:

1. How do we de�ne distance?

2. How do we choose starting values?

3. How do we choose ?

Compared to the Gaussian mixture problem,

% Should re scale the data ?

Normally Zuiden .

most times yes,
unless no .

could choose
Yd

- Minkowski d( ,2)= (E,Ki-3:)
->

Mahalanobis

randomly usually (shotyr- approach)·

Maybe using creater method? like hierarchical?

⑰

look ot between SS vs
. WithinsS ? (albow plot of rate

Another way
: Dunn index-> compares to a

"null" clustering .

No one right way ,

-
finite .

↓
"hard

also fixed # clusters assignment"

y "*signment" ↑W
In the Gaussian mixture,

we gut probabilities of assignment, not just assignment.

↓
model-based (making assumptims !

)

Imeans sensitive to starting values
,

In R
,

means function will fit thisalgorithm .


