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2 Pro�le Likelihood
The term “pro�le likelihood” can mean multiple things.

2.1 Analytical Methods via Pro�le Likelihoods

In certain problems it is possible to maximize the log likelihood for part of 
without actually knowing the value of the other part.

The pro�le likelihood is the usual likelihood with the known function of part of the
parameter vector inserted for that parameter, making the likelihood only a function of one
part of the vector.

In allcabithis away to get a point estinate and assess uncertainty in a proportion of the
-

parameter rector while essentially isnoring tre other parameters.
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Then we need only maximize ((Ers * (E)) Wrt Er to get En => Ez =r(Er)

In this case
,

we are assuming we can write EzIED as an analytical function
.
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Example (Hurricane Data, Cont’d): For  hurricanes that had moved far inland on the
East Coast of the US in 1900-1969, maximum 24-hour precipitation levels during the
time they were over mountains.

We modeled the precipitation levels with a gamma distribution, which has log likelihood

take a partial derivative not B :

set
- = S(,) =

- + - O
Be

=> B(x) = I

We can substitute this back into (4
,B) :

ea
,
B(a)) = -

nlog() - nx (logT -loga) + (x-1) [leg7: - nx .
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gamma_prof_loglik <- function(alpha, data) {
  beta <- mean(data) / alpha
  sum(dgamma(data, alpha, scale = beta, log = TRUE))
}

## get maximum profile likelihood estimate
alpha_mple <- optim(1, gamma_prof_loglik, data = hurr_rain, method = 

"BFGS", control = list(fnscale = -1))

## plot profile likelihood
data.frame(alpha = seq(1, 3, length.out = 200)) |>
  rowwise() |>
  mutate(p_log_lik = gamma_prof_loglik(alpha, hurr_rain)) |>
  ggplot() +
  geom_line(aes(alpha, p_log_lik)) +
  geom_vline(aes(xintercept = alpha_mple$par), lty = 2)
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same values we found before by maximizing

e(4,) in 2 dimensions .

but we only needed to optimize in 1 dimension !
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2.2 Numerical Methods via Pro�le Likelihoods

The log likelihood can be maximized over one portion of the partition  for
any �xed value of the other, even if that maximization cannot be expressed as an explicit
function.

We can de�ne a pro�le likelihood as

The pro�le likelihood and log pro�le likelihood behave in many ways like true likelihood
functions:

1. The estimate of  found by maximizing  is the MLE of .

2. A likelihood ratio test statistics formed with the pro�le likelihood has a limiting 
distribution.

3. A pro�le likelihood con�dence region is a valid approximate con�dence region for .

function
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↳ in other words
,

this can still he useful if both optimizations are done numerically .

This is the most commonly found situation for profile likelihood methods
.

more formally .

N
for any ptRe

B

then the log profile likelihood is

ePEn)= max log LE , E i

⑱ ⑲ ⑲

more

-> max(PCEn) =

max max Enter i

=max L(Er,)
Esta

a simultaneous MLE

-

for dim (2) =

p-r, din (En) =

2

T(n) =-2 (lP(ED-l(Ermae)) ->"XE for my fixed Entre

O ⑭

sapproximately the right corrage
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Where does this con�dence region come from?

However, these are not full likelihood functions.

this is an inverted profile likelihood ratio tast .

let =N
,

the look at profile likelihood ratio fest Ho : E is the true parameter.

than X = - 2 [lP189) - ePCE,pre)] is Yo (asymptotically based on properties of LRT)·

~quartie of Xi =

3
.
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.
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=> P(-2[eP(8i) - eP(
,morz)]< 80.93) ~0. 05

=>

- 2[lP(8) -

eP(8,mRe)] > 3
. 84
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uses more of the likelihood surface than

eP(8, ) < l (8
,move) - 1.92

band on Fisher Information
(which will be

symmetric).

-

The derivatives of profile likelihood don't behave like the derivatives of full likelihoods :

↳ot) o 0 recessarily e

When we hold Is fixed
,

the uncertainty in estimator of I2 is ignored in the recertainty of

estimation of En

-> Here is not a "Wald-type" theory for profile-likelihood estimates
.

↑
assmptotically Normal


