
Estimating Equations

Example: Consider the  with cdf

Comments:

1.  is max-stable.

2.  are exchangeable.

"Misspecified Models" "M-estimation"

Now we will consider "robustifying" infence so that misspecification does not infolidate our resultly

inference .

Motivating
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.
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Realistic ? Maybe not .

But this givesus equalsidependence => which can help reduce # parameters.

↳ and illustrate the concept of an estinating equation .



Let’s consider the likelihood.
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zizs product role on each of the 2 terms &> 4 terms
.

by Refine wegt to o zs things are gross just to write te likelihood !



How about if we were to just use pairs of points to estimate ?

If we just used  would the likelihood based on the bivariate density be
a good estimator for ?

-

F2z(zyzz) = exp(- (2 ,

"
+ z:)]
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-z = exp[- (E"+ )](z ,
z25 ** S -DE: E") + (2 +E

.

-

Yes : unbiased

No : ineficient (not using all data) .

what if we took all (3) = 10 pairs ? (Ein
, Fail , (E , : ,

Ei)
.

...

I

/ Yes : unbiased
,

efficiat (using all data) .

No : It's not the right likelihood !

compositie
likethood .



Let’s try it.

## [1] 0.003650963

## [1] 0.003650963

library(evd)
# simulate data with alpha = 0.5
alpha <- 0.5
z <- rmvevd(500, dep = alpha, d = 5, mar = c(1, 1, 1))

## bivariate density
d_bivar <- function(z, alpha){
    #here "z" is a single observation (ordered pair)
    inside <- z[1]^(-1/alpha) + z[2]^(-1/alpha)
    one <- exp(-inside^alpha)
    two <- (z[1]*z[2])^(-1 / alpha - 1)
    three <- (1 / alpha - 1)*inside^(alpha - 2)
    four <- inside^(2 * alpha - 2)
    one*two*(three + four)
}
    
d_bivar(c(4, 5), alpha = alpha)

dmvevd(c(4,5), dep = alpha, d = 2, mar = c(1,1,1))

## estimate alpha
log_pair_lhood <- function(alpha, z) {
    #here "z" is bivariate matrix of observations
    inside <- z[, 1]^(-1 / alpha) + z[, 2]^(-1 / alpha)
    log_one <- -inside^alpha
    log_two <- (-1 / alpha - 1) * (log(z[, 1]) + log(z[, 2]))
    three <- (1 / alpha - 1) * inside^(alpha - 2)
    four <- inside^(2 * alpha - 2)  
    contrib <- log_one + log_two + log(three + four)
    return(sum(contrib))
}

all_pairs_lhood <- function(alpha, z) {



## [1] 0.4954979 0.5182678

## [1] 0.745

    expand.grid(dim1 = seq_len(ncol(z)),
                dim2 = seq_len(ncol(z))) |>
      filter(dim1 < dim2) |>      rowwise() |>
      mutate(log_pair_lhood = log_pair_lhood(alpha, cbind(z[, dim1], 

z[, dim2]))) |>
    ungroup() |>      summarise(res = sum(log_pair_lhood)) |>
      pull(res)}
alpha_mple <- optim(.2, lower = .01, upper = .99, all_pairs_lhood, z 

= z, method = "Brent", hessian = TRUE, control = 
list(fnscale = -1))

(ci_mple <- alpha_mple$par + c(-1.96, 1.96)*sqrt(-1 / 
alpha_mple$hessian[1, 1]))

## checking coverage
#checking coverage
B <- 200
coverage <- numeric(B)
for(k in seq_len(B)) {
    z_k <- rmvevd(500, dep = .5, d = 5, mar = c(1, 1, 1))
    alpha_mple_k <- optim(.2, lower = .01, upper = .99, 

all_pairs_lhood, z = z_k, method = "Brent", hessian = TRUE, 
control = list(fnscale = -1))

    ci <- alpha_mple_k$par + c(-1.96, 1.96)*sqrt(-1 / 
alpha_mple_k$hessian[1, 1])

    coverage[k] <- as.numeric(ci[1] < alpha & ci[2] > alpha)
}
mean(coverage)

get all pairwise
likelihoods and sum

Conly allows pairwise depodue) ·

generate data

Get MLZ

- create (I

95 %
a did CI certain truth?

I want to becloseto 95

-uh oh!

↑ ·this has a sharper
curve

than this
Il

> narrower interal
.



So, it looks like the point estimate from the pairwise likelihood is ok, but we need to be
able to get an appropriate measure of uncertainty.

The proper adjustment is

it
is

-

LI :

recall if Emis is the estimate from the correct model
,

5 is the value of the tre parameter, then

(Ene-E)~ NC0, I(E)") .

so for fixed
,

large n EmeINCE , I ICE)")
.

I() = => 2)oflogf (Y,E))/08 logf(y, ,E))] "variance of the save"

this
is

recent- z [-tlogf(Y , El] "ression of Score contribution"!

model

In practice with the correct models

ICE)"= [uICE" ICE) approximated /nE(Emre)= Emn)

- This is wrong in the misspecified case !

models g
. 147.

A .
C .

Davidson,

statistic

A

=N)E ,
F(k(E) EYE)) where I(8) = -nE(bgfp(y,E))
ne"estimate "Sandwich estimator"

K(A =

n t [(olagfp(Y,;E))(logfp(7, ;z))]
brad meat bread

where fo is the pairwise density . (the incorrectly specified model) .

We will approach this from a more gereal discussion of estimating equation/M-estimators
(not just pairwise).
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1 Introduction

M-estimators are solutions of the vector equation

In the likelihood setting, what is ?

there are I parts of a fully specified statisical model :

& systematic part (mean) used for answering the underlying scientific question .

Radio
& distributional assumptions about the random

part of the model. 3
We want to develop robust inference So that misspecification of & don't invalidate the inference .

1

=> want to define our estimator of interest as the solution to some
estretreate it might not are

from he derivative of the log-likelihood.

e estimating
equations
-

i
. e

.
if I is an M-estimator

↑ ↑

Notes knownbxl b-dim parameter I(Y; , E) =

1 .

-
function does not depend on n or i .

Y:
are independent (not recessarily sich

,

e. g . regression)
.

for regression ,

I can depend on Ci

EI (vi,;,E) =

& .

-

ervative of the log likelihood contribution (the score contribution)
.

There are 2 types of M-estimators :

① P- type : solutions & to
,

I(7i
,1) = 0

& P-type : solutions which minimize
,

(i ,E) .

Often an M-estimator is of both types,
i. e

. If has a continuous first derivative wrt I ,
then

anM-estimator of 4-type is an M-estimator of e-type with P(y ,E) = JEP(y).



8 1 Introduction

Example: Let  be independent, univariate random variables. Is 

an M-estimator?

① P-type?

O = Si
=> 0 = EYi- 0 = 2

,

n(yi -) = (4: -8) = 4/;, 8) = 4:
-0

② -type? What does the sample mean minimize?

M
= E

,

(y, -8) = E
,

0(4i
,

0)

=EY-28
,

Yi =

To minimize
,

I =
-25

,
"i +2nd o

↓= EYi
SYGi

a
se ↑ F

IW I
Fre oX:

L

We will mainly focus on 4-type M-estimators - because its more straightforward to get the sandwich estimator .

But it sam be unful to think of an underlying p-type estimator
.



9

Example: Consider the mean deviation from the sample mean,

Is this an M-estimator?

(MAP)
a measure of spread.

To calculate
, requires 2 steps :

① calculate I

② calculate MAD => no single equation of the for Y(Yis A) =

0 can be found
.

But a system of equations of 4-type can be written
.

It = I

↑a(y , 2) =

y -

z

↑ (y ,
fr

,2) = Vy-82)- tr

So E = (F,,c)
,

will solve

. 8i, , ) = Set) : (8)S
Even though at first MAD doesn't look like an M-estimator

,

with a little

work we can write it as one .


