2 Basic Approach

M-estimators are solutions of the vector equation

$$\sum_{i=1}^n oldsymbol{\psi}(oldsymbol{Y}_i,oldsymbol{ heta}) = oldsymbol{0}$$

but what are they estimating?

Example (Sample Mean, cont'd): Recall we said $\theta = \overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$ is an M-estimator for $\psi(Y_i, \theta) = Y_i - \theta$. What is the true parameter?

To arrive at the sandwich estimator, assume $oldsymbol{Y}_1,\ldots,oldsymbol{Y}_n\overset{iid}{\sim}F$ and define

$$oldsymbol{G}_n(oldsymbol{ heta}) = rac{1}{n}\sum_{i=1}^n oldsymbol{\psi}(oldsymbol{Y}_i;oldsymbol{ heta}).$$

Taylor expansion of $\boldsymbol{G}_n(\boldsymbol{\theta})$ around $\boldsymbol{\theta}_0$ evaluated at $\hat{\boldsymbol{\theta}}$ yields

Define $\boldsymbol{A}(\boldsymbol{\theta}_0) = \mathrm{E}_F[-\boldsymbol{\psi}'(\boldsymbol{Y}_1, \boldsymbol{\theta}_0)].$

2.1 Estimators for A,BA,B olds...

2.1 Estimators for $\boldsymbol{A}, \boldsymbol{B}$

If the data truly come from the assumed parametric family $f(y; \theta)$,

One of the key contributions of M-estimation theory is to point out what happens when the assumed parametric family is not correct.

We can use empirical estimators of \boldsymbol{A} and \boldsymbol{B} :

Example (Coefficient of Variation): Let Y_1, \ldots, Y_n be idd from some distribution with finite fourth moment. The coefficient of variation is defined at $\hat{\theta}_3 = s_n/\overline{Y}$.

Define a three dimensional $\boldsymbol{\psi}$ so that $\hat{\boldsymbol{\theta}}_3$ is defined by summing the third component. What is the vector valued function $\boldsymbol{\psi}$ which yields an M-estimator for the coefficient of variation?

2.1 Estimators for A,BA,B olds...

What parameter vector is being estimated by the M-estimator?

What are the matrices \boldsymbol{A} and \boldsymbol{B} ?

Write out the asymptotic variance, \boldsymbol{V} .

Assume Y_i are iid from a normal distribution with mean 10 and standard deviation 1. Calculate $V_{3,3}$. Assume you have a same of size 25 and you get an estimated coefficient of variation of 0.11. Give the asymptotic 95% confidence interval.