Empirical Likelihood (EL)

Art Owen (1988, 1990) introduced J

Et is going to us The fact that the empirical cdf is a nonprometric MLE to assess how plausible andle of a parander is to proom inferrer.

likelihood methods

(metivative). 1 Mean Case

Suppose Y_1, \ldots, Y_n are iid with mean μ and covariance-variance Σ . For simplicity, say we are interested in estimating μ .

Imagine assigning probabilities
$$p_{1,...,p_n}$$
 to \mathcal{I}_{l} dota $\underline{Y}_{1,...,Y_n}$ where $0 \leq p_{\overline{i}} \leq 1$ and $\sum_{i=1}^{n} p_{\overline{i}} = 1$.
 $p_{\overline{i}} \mapsto \underline{Y}_{\overline{i}}$ $(*)$

Unlike parametric likelihood, where we assure a functional form for pi's, only constraints (+).

Define a multinomial likelihood:
$$\prod_{i=1}^{n} p_i$$
 (likelihood for $I_{i,-,ih}$ using $p_{i,-,ip_n}$).

Recall from class (likelihood Notes pg. 10) if you maximize
$$TT pE$$
, the maximizer
is $p_1 = p_2 = \dots = p_n = \frac{1}{n}$.

We have also seen, that the empirical cdf

F(y) =
$$\frac{1}{2} \sum_{i=1}^{n} \mathbb{I}(x_i \in y)$$
, $y \in \mathbb{R}^q$ is the MLE (pg. 23 on libelihood notes)

To perform *nonparametric* likelihood inference on μ , we can consider a constrained multinomial likelihood, known as the **Empirical Likelihood function of** μ :

$$L_{n}(\mu) = L_{n}(\mu|\mathbf{Y}) = \sup \left\{ \prod_{\substack{i=1 \\ i=1 \\ i \neq i \end{pmatrix}}^{n} p_{i} : p_{i} \mapsto \mathbf{Y}_{i}, \sum_{\substack{i=1 \\ i=1 \\ i \neq i \end{pmatrix}}^{n} p_{i} = 1, \sum_{\substack{i=1 \\ i=1 \\ i \neq i \end{pmatrix}}^{n} P_{i} = \mu \right\}.$$

Here constraint on (p_{1}, \dots, p_{n})

britten a peremeter velue μ and date μ , $L_{n}(\mu)$ essesses how plausible the value of μ .

L_{n}(\mu) is the logest multipoint likelihood possible for a probability assignment to the data hereing here μ .

The largest possible value of $L_n(\boldsymbol{\mu}|\boldsymbol{Y})$ is

$$\frac{\hat{\prod}}{\hat{n}} = L_n(\tilde{X}).$$

So $\overline{Y} = \frac{1}{4} \sum_{i=1}^{\infty} Y_i$ is a nonperanchic ML estimator of μ_i , i.e. the EL estimator $\mu_i = \overline{Y} + \mu_i$.

2 Statistical Inference

We can form an EL ratio for μ

$$R_{n}(\mu) = \frac{L_{n}(\mu|Y)}{L_{n}(\hat{\mu}|Y)}$$

$$= \frac{L_{n}(\mu|Y)}{\prod_{i=1}^{n} \frac{1}{n}} \int_{n}^{n} \frac{1}{2} \int_{$$

Theorem (Wilk's Theorem): If $Y_1, \ldots, Y_n \in \mathbb{R}^q$ are iid with mean μ_0 and covariance-variance Σ where rank $(\Sigma) = q$, then

$$-2\log R_n(oldsymbol{\mu}_0) \stackrel{d}{
ightarrow} \chi_q^2 ext{ as } n
ightarrow \infty.$$

moterial for oxam ands	_
exam vere.	

3 EL with Estimating Equations

For EL inference on $\boldsymbol{\theta} \in \mathbb{R}^{b}$, we make an EL function

Then we can get a point estimate, EL ratio, and corresponding CIs, as well as "profile" EL:

Theorem: Suppose $\mathbf{Y}_1, \mathbf{Y}_2, \dots \in \mathbb{R}^q$ are iid with $\mathbf{E}\boldsymbol{\psi}(\mathbf{Y}_1, \boldsymbol{\theta}_0) = \mathbf{0}_r$ and $\operatorname{Var}[\boldsymbol{\psi}(\mathbf{Y}_1, \boldsymbol{\theta}_0)] = \mathbf{E}\boldsymbol{\psi}(\mathbf{Y}_1, \boldsymbol{\theta}_0)\boldsymbol{\psi}(\mathbf{Y}_1, \boldsymbol{\theta}_0)^\top$ is positive definite, where $\boldsymbol{\theta}_0$ denotes the true parameter value.

Suppose also that $\partial \psi(\boldsymbol{y}, \boldsymbol{\theta}) / \partial \boldsymbol{\theta}$ and $\partial^2 \psi(\boldsymbol{y}, \boldsymbol{\theta}) / \partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\top}$ are continuous in a neighborhood of $\boldsymbol{\theta}_0$ and that, in this neighborhood, $||\psi(\boldsymbol{Y}_1, \boldsymbol{\theta})||^3$, $||\partial \psi(\boldsymbol{y}, \boldsymbol{\theta}) / \partial \boldsymbol{\theta}||$ and $||\partial^2 \psi(\boldsymbol{y}, \boldsymbol{\theta}) / \partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\top}||$ are bounded by an integrable function $\Psi(\boldsymbol{Y}_1)$.

Finally, suppose the $r \times b$ matrix $D_{\psi} \equiv \mathrm{E} \partial \psi(\boldsymbol{y}, \boldsymbol{\theta}) / \partial \boldsymbol{\theta}$ has full column rank b.

Then, as $n \to \infty$,

i.
$$\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) \stackrel{d}{\rightarrow} N(\boldsymbol{0}_b, V)$$
, where $V = (D_{\boldsymbol{\psi}}^{\top} \mathrm{Var}[\boldsymbol{\psi}(\boldsymbol{Y}_1, \boldsymbol{\theta}_0)] D_{\boldsymbol{\psi}})^{-1}$.

- ii. If r > b, the asymptotic variance V cannot increase if an estimating function is added.
- iii. To test $H_0: \boldsymbol{\theta} = \boldsymbol{\theta}_0$, we may use $-2 \log R_n(\boldsymbol{\theta}_0)$ and when H_0 is true,

$$-2\log R_n(oldsymbol{ heta}_0) \stackrel{d}{
ightarrow} \chi_b^2$$

iv. If r > b, to test $H_0 : \mathbf{E}\psi(\mathbf{Y}_1, \boldsymbol{\theta}) = \mathbf{0}_r$ holds for some $\boldsymbol{\theta}$, we may use

$$-2\lograc{L_n(\widehat{oldsymbol{ heta}})}{\prod\limits_{i=1}^n(1/n)}=$$

and when H_0 is true this quantity converges in distribution to χ^2_{r-b} .

v. To test the profile assumption $H_0: \boldsymbol{\theta}_1 = \boldsymbol{\theta}_1^0 \in \mathbb{R}^q$, we can use the profile EL ratio $-2\log R_n(\boldsymbol{\theta}_1^0)$ and , when H_0 is true, $-2\log R_n(\boldsymbol{\theta}_1^0) \stackrel{d}{\to} \chi_q^2$.

4 Computation

Technically, for a given value of $\boldsymbol{\theta}$, define $L_n(\boldsymbol{\theta}|\boldsymbol{Y}) = 0$ if

$$\mathcal{A}_n(oldsymbol{ heta}) = \left\{ \prod_{i=1}^n p_i: p_i \mapsto oldsymbol{Y}_i, \quad \sum_{i=1}^n p_i = 1, \quad \sum_{i=1}^n oldsymbol{p}_i oldsymbol{\psi}(oldsymbol{Y}_i,oldsymbol{ heta}) = oldsymbol{0}_r
ight\}$$

is empty.

If $\mathbf{0}_r$ is in the interior convex hull of $\{\psi(\mathbf{Y}_i, \boldsymbol{\theta})\}_{i=1}^n$, then $\mathcal{A}_n(\boldsymbol{\theta})$ will not be empty.

4 Computation

The supremum in the definition of $L_n(\boldsymbol{\theta}|\boldsymbol{Y})$ looks nasty, but the form simplifies if $L_n(\boldsymbol{\theta}|\boldsymbol{Y}) > 0$ for a given $\boldsymbol{\theta} \in \mathbb{R}^b$. To see this, fix $\boldsymbol{\theta}$ and let

$$\mathcal{B}_n(oldsymbol{ heta}) = \left\{ (p_1,\ldots,p_n): p_i \geq 0, \quad \sum_{i=1}^n p_i = 1, \quad \sum_{i=1}^n oldsymbol{p}_i oldsymbol{\psi}(oldsymbol{Y}_i,oldsymbol{ heta}) = oldsymbol{0}_r
ight\} \subset [0,1]^n$$

To maximize $\prod_{i=1}^{n} p_i$ on $\mathcal{B}_n(\boldsymbol{\theta})$ and find (p_1^*, \dots, p_n^*) , use Lagrange multipliers $a \in \mathbb{R}$ and $\boldsymbol{\lambda} \in \mathbb{R}^r$ and maximize

$$f(p_1,\ldots,p_n,a,oldsymbol{\lambda}) = \log \prod_{i=1}^n p_i + a \left(1-\sum_{i=1}^n p_i
ight) - noldsymbol{\lambda}^ op \left(\sum_{i=1}^n oldsymbol{p}_ioldsymbol{\psi}(oldsymbol{Y}_i,oldsymbol{ heta})
ight)$$

over $p_i \in [0,1], a \in \mathbb{R},$ and $oldsymbol{\lambda} \in \mathbb{R}^r.$

Take derivatives & set to zero: