
Empirical Likelihood (22) .

Art Owen (1988
, 1990) introduced

This is a geral nompaanetic methodology for creating likelihood-type infrence

without specifying a joint distributional form for the data

-

↳
We won't guen wrong

!

-wo
likelihood

!

EL is going to use the fact that the empirical adf is a nonparametric MLE to
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umplausibleavalue of a parameter is to perform infence.
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1 Mean Case
Suppose  are iid with mean  and covariance-variance . For simplicity, say we
are interested in estimating .

Imotivating) ·
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Imagine assigning probabilities ...Pr to the data Lis-sIn where 01PiI) and Put

ne e
pintli (A)

Unlike parametric likelihood
,

wher he assure a functibed form for pi's, only constraints (*)
.

Define a multicomic likelihood:#P :
Clikelihood for In-h using picripal .

Recall from class (likelihoodWhe19. 10) If you maximize pi
,

the maxitiea

is p , =Pz= ...

=

Pr= I .

We have also seen, that the empirical adf

Fr(y) = + #(7i=7) ,
YERY is be MLt (pg .

23 an likelihood notes)
.

In otrwords
, given the data the empirical cdf maximizes

,
pi.
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To perform nonparametric likelihood inference on , we can consider a constrained
multinomial likelihood, known as the Empirical Likelihood function of :

The largest possible value of  is

-

function of mean of a der (pis-spul an (7is-3)
↓ pi?

o

e

(n(M) .

=

e in -
multinomial

El function likeliho mean
constraint on (Pic-->Pr)

Given a parameter value A and data1
,
La(M) assesses how plansible the value

of

v is

Ln(M) is the largest multimonial likelihood possible for a probability assignment to
the

data having

bean
M

.

= (n (E) .

So I = Iti is a nonpartic MC estimator of A ,
i

.
e .

He EL estimator =

I &M -
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2 Statistical Inference
We can form an EL ratio for 

Theorem (Wilk’s Theorem): If  are iid with mean  and covariance-
variance  where , then

-

= In pit
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=n(n(111)

=sup Empi : pico, Pil , tipi
= 3

-

E(Yi -M)pi =
P

material Eexament >
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3 EL with Estimating Equations

For EL inference on , we make an EL function

Then we can get a point estimate, EL ratio, and corresponding CIs, as well as “pro�le”
EL:



6 3 EL with Estimating Equations

Theorem: Suppose  are iid with  and
 is positive de�nite, where  denotes the true

parameter value.

Suppose also that  and  are continuous in a neighborhood of
 and that, in this neighborhood, ,  and 

are bounded by an integrable function .

Finally, suppose the  matrix  has full column rank .

Then, as ,

i. , where .

ii. If , the asymptotic variance  cannot increase if an estimating function is
added.

iii. To test , we may use  and when  is true,

iv. If , to test  holds for some , we may use

and when  is true this quantity converges in distribution to .

v. To test the pro�le assumption , we can use the pro�le EL ratio

 and , when  is true, .
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4 Computation
Technically, for a given value of , de�ne  if

is empty.

If  is in the interior convex hull of , then  will not be empty.



8 4 Computation

The supremum in the de�nition of  looks nasty, but the form simpli�es if
 for a given . To see this, �x  and let

To maximize  on  and �nd , use Lagrange multipliers  and

 and maximize

over , and .
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Take derivatives & set to zero:


