
Empirical Likelihood (22) .

Art Owen (1988
, 1990) introduced

This is a geral nompaanetic methodology for creating likelihood-type infrence

without specifying a joint distributional form for the data

-

↳
We won't guen wrong

!

-wo
likelihood

!

EL is going to use the fact that the empirical adf is a nonparametric MLE to
-

umplausibleavalue of a parameter is to perform infence.

likelihood methods
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1 Mean Case
Suppose  are iid with mean  and covariance-variance . For simplicity, say we
are interested in estimating .

Imotivating) ·

qR R /949

Imagine assigning probabilities ...Pr to the data Lis-sIn where 01PiI) and Put

ne e
pintli (A)

Unlike parametric likelihood
,

wher he assure a functibed form for pi's, only constraints (*)
.

Define a multicomic likelihood:#P :
Clikelihood for In-h using picripal .

Recall from class (likelihoodWhe19. 10) If you maximize pi
,

the maxitiea

is p , =Pz= ...

=

Pr= I .

We have also seen, that the empirical adf

Fr(y) = + #(7i=7) ,
YERY is be MLt (pg .

23 an likelihood notes)
.

In otrwords
, given the data the empirical cdf maximizes

,
pi.
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To perform nonparametric likelihood inference on , we can consider a constrained
multinomial likelihood, known as the Empirical Likelihood function of :

The largest possible value of  is

-

function of mean of a der (pis-spul an (7is-3)
↓ pi?

o

e

(n(M) .

=

e in -
multinomial

El function likeliho mean
constraint on (Pic-->Pr)

Given a parameter value A and data1
,
La(M) assesses how plansible the value

of

v is

Ln(M) is the largest multimonial likelihood possible for a probability assignment to
the

data having

bean
M

.

= (n (E) .

So I = Iti is a nonpartic MC estimator of A ,
i

.
e .

He EL estimator =

I &M -
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2 Statistical Inference
We can form an EL ratio for 

Theorem (Wilk’s Theorem): If  are iid with mean  and covariance-
variance  where , then

-

= In pit
e

=n(n(111)

=sup Empi : pico, Pil , tipi
= 3

-

E(Yi -M)pi =
P

material
for
>

exam
ends

were.

In other words
,

for Ho :
M =MotRY,

it Ho is tre, -2 logRn(40) ->
g asser

.

* IL behove like parametric likelihoods for leg raties ! A

So
, if Xia denotes the 1-x quartile of Xig ,

an approximate 100 (1-x)% unfrduec

region for M
is

CR
= EMER : -blogRn(M) - X

x
,g}

By invety the EL test

as n -

P(Bot (R) = P(-2logRn(n) = Yix
,
q)- P(X8 - x x

,
) = 1 -xx

For proof of this theorem
, see Owen (1988)

.
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3 EL with Estimating Equations

For EL inference on , we make an EL function

Then we can get a point estimate, EL ratio, and corresponding CIs, as well as “pro�le”
EL:

(Qin and Lawless
,
1994)

.

Recall :

for I. --In iid and ERP a parameter of intrest
.

Estimating equations link a data point Is to parameters through rIp functions

*(7i
,
E) which satifies I (Ii

,E) = Dr
.

extures meanexample ting function !

~ anyW(n(E) =

sup S,Pi : Pi20 , Pi=1
, Pil (1:, E) = Or3
-

pis are placed on I(7isE) to have expectation zero
.

The EL function judges the plausibility of a given value of I based on data
.

point estimate : maximize LnCE) to obtain maximum EL estimator &

EL ratio : RnCE) = y just like practic likelihood)

confidence region : CR = SEER : - 2logRn(E) = xi-x
,g} (invert Cratio) ·

ProfileEL :

SupposeE)E,,E2) ,
E,

E 198
,
EzER

*8
. Given Ei define zo,

where

↳n (Ens Es
,
) = MP Lu (En ,

Er) .

Ran the profile EL ration for E
,
is RnCE

,
= Erro .



6 3 EL with Estimating Equations

Theorem: Suppose  are iid with  and
 is positive de�nite, where  denotes the true

parameter value.

Suppose also that  and  are continuous in a neighborhood of
 and that, in this neighborhood, ,  and 

are bounded by an integrable function .

Finally, suppose the  matrix  has full column rank .

Then, as ,

i. , where .

ii. If , the asymptotic variance  cannot increase if an estimating function is
added.

iii. To test , we may use  and when  is true,

iv. If , to test  holds for some , we may use

and when  is true this quantity converges in distribution to .

v. To test the pro�le assumption , we can use the pro�le EL ratio

 and , when  is true, .

mint
result

IL point estimates se

asymptotically normal
.

Cor decrease if an estimating function is dropped).

& dimension of E.

Rn(ko)=
-> Infidence regions : CR = SEERP : -2 legRnCE) = Y

,
ra3

.

- 2
onet condition "How compatible

is

the

more monet condition ? "

functions
tran parameters -

2 log (n" (nCE)) .

-
biggest possible value could ever hare for an EL function without movet constraints.

e

# excess estimatily functions.

Asymptotically , -GlogRnCto) and -2 log (n
"

(n(E)) are independent.

-

I
# parameters after profiling.
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4 Computation
Technically, for a given value of , de�ne  if

is empty.

If  is in the interior convex hull of , then  will not be empty.

(EL function might not be compatible over all possible paareter values).

If AnCE) is empty , AnLE)=%, tran In (E) is not defined .

=> Define (nCE) =
0

.
(this is the smallest it can be anyways).

-

Aconrex is the smallest convex st containing I(1,E), ...,
I (Inse) .

: If 4(icE7 =
: -1 (mean case) and

Hourex = [miny: -8
,

MaxY; -t)

e
q =1:

oa

Yi -t

A convex
&

&

q
= 2 :

&

PI Hi-0 d

P
⑧
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The supremum in the de�nition of  looks nasty, but the form simpli�es if
 for a given . To see this, �x  and let

To maximize  on  and �nd , use Lagrange multipliers  and

 and maximize

over , and .

↑
closed and bounded (compact) set in IR*

.

= the supremon
(nCE): sup An(E)= sup5,

Pi : (pi, -- pn) t BrCE)] is attained as

a maximum of Pi m BLE) . I pic--p* - BaCE) where LnCE)=,Pi

cuniqueme) . Suppose Y ....*** O & pis-Pr* 30 lie in BuCE) and !Pi* = g,*.

Now let i
*

=

<P + <1- a) g* for at [0 , 17 .

If & -C0, 1)
,

it holds that logr> Clogp+ (1-dlogg: (Jensen's).
If #8* = P= M holds

,

where MT0 is the maximum of
,
PimBrCE).

Contradiction!)

The Slogr* >Eleyp! which cannot be free because DE is the max of PioBalt).

=> (i --p) which maximize
.#P: on BrCE) must be unique.

n ne

probability EE moment constraint.
constraint
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Take derivatives & set to zero:

1 flin
,

a
,1) = p - a - n x4 (i)E) -> api

= 1 -npix 4 (y,E)
Opi

Eapi=EE1-upix I Ci
,I

Set

↳ flu,a, 1)==0

-a =

n - nxt, Pil(2)

0 f(P-iPn ,
G

,1) = /1:,7)
= 0-n I

-

01 Pi =
- -Pi1T(yi

,
)

= I - pi Y(,,)

=> Pi(1+ I (7;,El
= I

convex full of
n

=>

pi
= ),)

~STE)3 :=
L

If Or Aconrex
,

then
lagrangemultiplier

.

I
InCE)= (II(

,) where I is determined by solving

0 =

,
PiY(1i,)

=
, :,--

See Art Owen's website for code/R package.


