Empirical Likelihood (EL)

Art Owen (1988, 1990) introduced J

Et is going to us The fact that the empirical cdf is a nonprometric MLE to assess how plausible andle of a parander is to proom inferrer.

likelihood methods

(metivative). 1 Mean Case

Suppose Y_1, \ldots, Y_n are iid with mean μ and covariance-variance Σ . For simplicity, say we are interested in estimating μ .

Imagine assigning probabilities
$$p_{1,...,p_n}$$
 to \mathcal{I}_{l} dota $\underline{Y}_{1,...,Y_n}$ where $0 \leq p_{\overline{i}} \leq 1$ and $\sum_{i=1}^{n} p_{\overline{i}} = 1$.
 $p_{\overline{i}} \mapsto \underline{Y}_{\overline{i}}$ $(*)$

Unlike parametric likelihood, where we assure a functional form for pi's, only constraints (+).

Define a multinomial likelihood:
$$\prod_{i=1}^{n} p_i$$
 (likelihood for $I_{i,-,ih}$ using $p_{i,-,ip_n}$).

Recall from class (likelihood Notes pg. 10) if you maximize
$$TT pE$$
, the maximizer
is $p_1 = p_2 = \dots = p_n = \frac{1}{n}$.

We have also seen, that the empirical cdf

F(y) =
$$\frac{1}{2} \sum_{i=1}^{n} \mathbb{I}(x_i \in y)$$
, $y \in \mathbb{R}^q$ is the MLE (pg. 23 on libelihood notes)

To perform *nonparametric* likelihood inference on μ , we can consider a constrained multinomial likelihood, known as the **Empirical Likelihood function of** μ :

$$L_{n}(\mu) = L_{n}(\mu|\mathbf{Y}) = \sup \left\{ \prod_{\substack{i=1 \\ i=1 \\ i \neq i \end{pmatrix}}^{n} p_{i} : p_{i} \mapsto \mathbf{Y}_{i}, \sum_{\substack{i=1 \\ i=1 \\ i \neq i \end{pmatrix}}^{n} p_{i} = 1, \sum_{\substack{i=1 \\ i=1 \\ i \neq i \end{pmatrix}}^{n} P_{i} = \mu \right\}.$$

Here constraint on (p_{1}, \dots, p_{n})

britten a peremeter velue μ and date μ , $L_{n}(\mu)$ essesses how plausible the value of μ .

L_{n}(\mu) is the logest multipoint likelihood possible for a probability assignment to the data hereing here μ .

The largest possible value of $L_n(\boldsymbol{\mu}|\boldsymbol{Y})$ is

$$\frac{\hat{\prod}}{\hat{n}} = L_n(\tilde{X}).$$

So $\overline{Y} = \frac{1}{4} \sum_{i=1}^{\infty} Y_i$ is a nonperanchic ML estimator of μ_i , i.e. the EL estimator $\mu_i = \overline{Y} + \mu_i$.

2 Statistical Inference

We can form an EL ratio for ${m \mu}$

$$R_{n}(\boldsymbol{\mu}) = \frac{L_{n}(\boldsymbol{\mu}|\boldsymbol{Y})}{L_{n}(\boldsymbol{\mu}|\boldsymbol{Y})}$$

$$= \frac{L_{n}(\boldsymbol{\mu}|\boldsymbol{Y})}{\prod_{i=1}^{n} \prod_{i=1}^{n} \sum_{i=1}^{n} p_{i} = 1, \sum_{i=1}^{n} p_{i} = n^{2}$$

$$= n^{n} L_{n}(\boldsymbol{\mu}|\boldsymbol{Y})$$

$$= \sup_{i=1}^{n} \sum_{i=1}^{n} np_{i} \leq p_{i} \geq 0, \sum_{i=1}^{n} p_{i} = 1, \sum_{i=1}^{n} \sum_{i=1}^{n} \prod_{i=1}^{n} np_{i} \leq p_{i} \geq 0, \sum_{i=1}^{n} p_{i} = 0, \sum_{i=1}^{n} p_{i} = 0, p_{i} \geq 0$$

Theorem (Wilk's Theorem): If $Y_1, \ldots, Y_n \in \mathbb{R}^q$ are iid with mean μ_0 and covariance-variance Σ where rank $(\Sigma) = q$, then

$$-2\log R_n(oldsymbol{\mu}_0) \stackrel{d}{
ightarrow} \chi_q^2 ext{ as } n
ightarrow \infty.$$

moterial for exam ends vere.

EL behave like parametric likelihoods for log raturs [#
So, if
$$\chi^2_{1-\alpha,\beta}$$
 denotes the 1-d quentile of χ^2_q , an approximate $100(1-\alpha)\%$ information
region for M is
 $CR = SMER^9$: $-2\log_R(M) \le \gamma^2 - 3$

$$CR = \{ \underline{\mathcal{M}} \in \mathbb{R}^{q} : -\lambda \log R_{n} (\underline{\mathcal{M}}) \leq \mathcal{X}_{1-\alpha, q}^{2} \}$$

By inverting the EL test

$$P(\mu_{0} \in CR) = P(-\lambda \log k_{n}(\mu_{0}) \in \chi^{2}_{ind,q}) \xrightarrow{a_{i}n \to \infty} P(\chi^{2}_{q} \in \chi^{2}_{ind,q}) = 1 - \alpha_{f}$$

For proof of this traven see Owen (1988).

3 EL with Estimating Equations

(Qin and Lawless, 1994).

Recall:

For YII-1/2 iid and DER^b a parameter of interest.

Estimating equations link a data point fi to paraneters through r 2 p functions

 $\Upsilon(\mathcal{I}_{i}, \mathfrak{C})$ which satisfies $\Xi \Upsilon(\mathcal{I}_{i}, \mathfrak{G}) = \underline{O}_{r}$.

For EL inference on $\theta \in \mathbb{R}^{b}$, we make an EL function $L_{h}(\underline{\theta}) = \sup \left\{ \prod_{i=1}^{n} P_{i}^{i} : P_{i}^{i} \ge 0, \sum_{i=1}^{n} P_{i}^{i} = 1, \sum_{i=1}^{n} P_{i}^{i} \underbrace{\bot}_{i} \underbrace{P_{i}^{i}}_{p_{i}^{i}} \underbrace{\bot}_{i} \underbrace{P_{i}^{i}}_{p_{i}^{i}} \underbrace{\bot}_{i} \underbrace{P_{i}^{i}}_{p_{i}^{i}} \underbrace{P_{i}^{i}}_{p_{i}^{i}}$

The EL function judges the plansibility of a given value of a based on docta.

Then we can get a point estimate, EL ratio, and corresponding CIs, as well as "profile" EL:

point estimate: maximize
$$L_n(\underline{\theta})$$
 to obtain maximum EL estimator $\hat{\theta}$
EL ratio: $R_n(\underline{\theta}) = \frac{L_n(\underline{\theta})}{L_n(\hat{\theta})}$ (just like perametric likelihood)
(onfidence region: $CR = \{\underline{\theta} \in \mathbb{R}^k : -2\log R_n(\underline{\theta}) \leq \chi_{1-\alpha, q}^2\}$ (insert EL ratio).
Profile EL: Suppose $\underline{\theta}(\underline{\theta}_1, \underline{\theta}_2), \ \underline{\theta}_1 \in \mathbb{R}^{q}, \ \underline{\theta}_2 \in \mathbb{R}^{k-q}$. Given $\underline{\theta}_1$, define $\hat{\theta}_{2,\underline{\theta}_1}$ where
 $L_h(\underline{\theta}_1, \underline{\theta}_{2,q_1}) = \sup_{\underline{\theta}_2} L_h(\underline{\theta}_1, \underline{\theta}_2).$

Then the profile EL ration for $\underline{\Phi}_i$ is $R_n(\underline{\pi}_i) = \frac{L_n(\underline{\theta}_i, \underline{\theta}_{\underline{e}, \underline{\theta}_i})}{L_n(\underline{\theta})}$.

 $\mathbf{5}$

main EL result

Theorem: Suppose $\mathbf{Y}_1, \mathbf{Y}_2, \dots \in \mathbb{R}^q$ are iid with $\mathbf{E}\boldsymbol{\psi}(\mathbf{Y}_1, \boldsymbol{\theta}_0) = \mathbf{0}_r$ and $\operatorname{Var}[\boldsymbol{\psi}(\mathbf{Y}_1, \boldsymbol{\theta}_0)] = \mathbf{E}\boldsymbol{\psi}(\mathbf{Y}_1, \boldsymbol{\theta}_0)\boldsymbol{\psi}(\mathbf{Y}_1, \boldsymbol{\theta}_0)^\top$ is positive definite, where $\boldsymbol{\theta}_0$ denotes the true parameter value.

Suppose also that $\partial \psi(\boldsymbol{y}, \boldsymbol{\theta}) / \partial \boldsymbol{\theta}$ and $\partial^2 \psi(\boldsymbol{y}, \boldsymbol{\theta}) / \partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\top}$ are continuous in a neighborhood of $\boldsymbol{\theta}_0$ and that, in this neighborhood, $||\psi(\boldsymbol{Y}_1, \boldsymbol{\theta})||^3$, $||\partial \psi(\boldsymbol{y}, \boldsymbol{\theta}) / \partial \boldsymbol{\theta}||$ and $||\partial^2 \psi(\boldsymbol{y}, \boldsymbol{\theta}) / \partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\top}||$ are bounded by an integrable function $\Psi(\boldsymbol{Y}_1)$.

Finally, suppose the $r \times b$ matrix $D_{\psi} \equiv E \partial \psi(\boldsymbol{y}, \boldsymbol{\theta}) / \partial \boldsymbol{\theta}$ has full column rank b.

Then, as $n \to \infty$,

i.
$$\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) \stackrel{d}{\rightarrow} N(\boldsymbol{0}_b, V)$$
, where $V = (D_{\boldsymbol{\psi}}^{\top} \operatorname{Var}[\boldsymbol{\psi}(\boldsymbol{Y}_1, \boldsymbol{\theta}_0)] D_{\boldsymbol{\psi}})^{-1}$. EL point estimates can asymptotically normal.

ii. If r > b, the asymptotic variance V cannot increase if an estimating function is added. (or decrease if an estimating function is dropped).

iii. To test $H_0: \boldsymbol{\theta} = \boldsymbol{\theta}_0$, we may use $-2 \log R_n(\boldsymbol{\theta}_0)$ and when H_0 is true,

$$-2\log R_n(oldsymbol{ heta}_0) \stackrel{d}{
ightarrow} \chi^2_{b}$$
 dimension of $oldsymbol{ heta}$.

$$\mathcal{A}_{n}\left(\underline{\theta}_{o}\right) = \frac{L_{n}\left(\underline{\theta}_{o}\right)}{L_{n}\left(\underline{\theta}\right)}$$

iv. If r > b, to test $H_0: E\psi(Y_1, \theta) = \mathbf{0}_r$ holds for some θ , we may use

$$\frac{\mu_{n}}{\mu_{n}} \frac{\mu_{n}}{\rho_{n}} \frac{L_{n}(\hat{\theta})}{\prod_{i=1}^{n} (1/n)} = -\lambda \log \left(n^{n} L_{n}(\hat{\theta})\right).$$

"How compatible is the monet condition?"

and when H_0 is true this quantity converges in distribution to χ^2_{r-b} .

Asymptotically, -2log Rn (00) and -2log (nn Ln (6)) are independent.

v. To test the profile assumption $H_0: \boldsymbol{\theta}_1 = \boldsymbol{\theta}_1^0 \in \mathbb{R}^q$, we can use the profile EL ratio

 $-2\log R_n(oldsymbol{ heta}_1^0) ext{ and }, ext{ when } H_0 ext{ is true, } -2\log R_n(oldsymbol{ heta}_1^0) \stackrel{d}{
ightarrow} \chi_q^2.$

* parameters after profiliz.

4 Computation

Technically, for a given value of $\boldsymbol{\theta}$, define $L_n(\boldsymbol{\theta}|\boldsymbol{Y}) = 0$ if

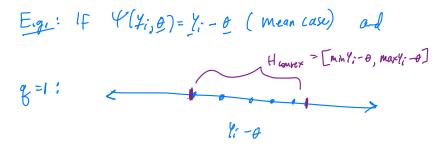
$$\mathcal{A}_n(oldsymbol{ heta}) = egin{cases} \prod_{i=1}^n p_i : p_i \mapsto oldsymbol{Y}_i, \quad \sum_{i=1}^n p_i = 1, \quad \sum_{i=1}^n oldsymbol{p}_i oldsymbol{\psi}(oldsymbol{Y}_i,oldsymbol{ heta}) = oldsymbol{0}_r \end{bmatrix}$$

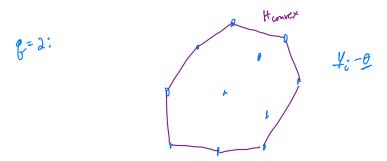
is empty. (EL function might not be computible over all possible prearder values).

If $\mathcal{A}_n(\mathfrak{C})$ is empty, $\mathcal{A}_n(\mathfrak{C}) = \phi$, then $\mathcal{L}_n(\mathfrak{C})$ is not defined.

If $\mathbf{0}_r$ is in the interior convex hull of $\{\psi(\mathbf{Y}_i, \boldsymbol{\theta})\}_{i=1}^n$, then $\mathcal{A}_n(\boldsymbol{\theta})$ will not be empty.

$$H_{\text{convex}}$$
 is the smallest convex set containing $\Upsilon(\mathfrak{X}_{1},\mathfrak{F}),\ldots,\Upsilon(\mathfrak{X}_{n},\mathfrak{F})$.





The supremum in the definition of $L_n(\boldsymbol{\theta}|\boldsymbol{Y})$ looks nasty, but the form simplifies if $L_n(\boldsymbol{\theta}|\boldsymbol{Y}) > 0$ for a given $\boldsymbol{\theta} \in \mathbb{R}^b$. To see this, fix $\boldsymbol{\theta}$ and let

$$\begin{split} \mathcal{B}_{n}(\theta) &= \left\{ (p_{1},\ldots,p_{n}): p_{i} \geq 0, \quad \sum_{i=1}^{n} p_{i} = 1, \quad \sum_{i=1}^{n} p_{i}\psi(\mathbf{Y}_{i},\theta) = \mathbf{0}_{r} \right\} \subset [0,1]^{n} \\ \stackrel{f}{\underset{i=1}{\uparrow}} \\ \begin{array}{l} f\\ (low d and bounded (compact) sut in R^{n}. \end{array} \\ & \Rightarrow \quad \mathcal{H}e \; supremum \; \ln(\theta) \geq \sup \; \mathcal{A}_{n}(\theta) = \sup \; \left\{ \prod_{i=1}^{n} p_{i}: (p_{1}) \dots p_{n} \right\} \in \mathcal{B}_{n}(\theta) \; \right\} \; \text{ is attained as} \\ \begin{array}{l} \alpha \; \max \\ \max \\ \max \\ maximum \; ef \; \prod_{i=1}^{n} p_{i} \; m \; \mathcal{B}(\theta). \; \exists \; p_{1}^{n} \dots p_{n}^{n} \in \mathcal{D}_{n}(\theta) \; \text{where } \; L_{n}(\theta) = \prod_{i=1}^{n} p_{i}^{n}. \end{array} \\ \begin{array}{l} \text{Suppose } \; g_{1}^{n} \dots g_{n}^{n} \geq 0 \; \forall \; p_{1}^{n} \dots p_{n}^{n} \geq 0 \; \text{ke in } \mathcal{B}_{n}(\theta) \; \text{ad} \; \prod_{i=1}^{n} p_{i}^{n} \in \frac{1}{p_{i}}, \\ \text{Now } \; \text{At } \; f_{i}^{n} = \; dp_{i}^{n} + (1 - \alpha) g_{i}^{n} \; \text{for } d \in [0, 1]. \end{array} \\ \begin{array}{l} \text{If } \; d \in (o_{i}(1), \; \text{it holds } \; \text{Hat } \; \sum_{i=1}^{n} \log r_{i}^{n} \geq \alpha \; \approx \sum_{i=1}^{n} \log p_{i}^{n} + (1 - \alpha) \sum_{i=1}^{n} \log q_{i}^{n} \; C_{\text{Jensen's}}. \end{array} \\ \begin{array}{l} \text{If } \; \prod_{i=1}^{n} p_{i}^{n} = \prod_{i=1}^{n} p_{i}^{n} = M \; \text{holds, where } M \geq 0 \; \text{is the maximum of } \prod_{i=1}^{n} p_{i} \; \text{for } B_{n}(\theta). \end{array} \\ \begin{array}{l} \text{If } \; \prod_{i=1}^{n} p_{i}^{n} = \sum_{i=1}^{n} \log p_{i}^{n} \; \text{which cannot be true because } \prod_{i=1}^{n} p_{i}^{n} \; \text{is the max } q_{i}^{n} \; \prod_{i=1}^{n} p_{i} \; m \; B_{n}(\theta). \end{array} \\ \begin{array}{l} \text{Prove } \; p_{i}^{n} \; p_$$

To maximize $\prod_{i=1}^{n} p_i$ on $\mathcal{B}_n(\boldsymbol{\theta})$ and find (p_1^*, \dots, p_n^*) , use Lagrange multipliers $a \in \mathbb{R}$ and $\boldsymbol{\lambda} \in \mathbb{R}^r$ and maximize

$$f(p_1, \dots, p_n, a, \boldsymbol{\lambda}) = \log \prod_{i=1}^n p_i + a \left(1 - \sum_{i=1}^n p_i\right) - n \boldsymbol{\lambda}^{ op} \left(\sum_{i=1}^n \boldsymbol{p}_i \boldsymbol{\psi}(\boldsymbol{Y}_i, \boldsymbol{\theta})\right)$$

over $p_i \in [0, 1], a \in \mathbb{R}$, and $\boldsymbol{\lambda} \in \mathbb{R}^r$.

(uniqueness).

Take derivatives & set to zero:

4

$$\frac{1}{2p_{i}} f(p_{i}, q_{h}, a_{i}2) = \frac{1}{p_{i}} - a - h \lambda^{T} \Psi(y_{i}, b) \stackrel{\text{set}}{=} 0 \implies ap_{i} = 1 - h p_{i}\lambda^{T} \Psi(y_{i}, b)$$

$$\frac{1}{2p_{i}} f(p_{i}, q_{h}, a_{i}2) = \frac{1}{p_{i}} \sum_{i=1}^{n} p_{i} \stackrel{\text{set}}{=} 0$$

$$\frac{1}{2} a = n - n \lambda^{T} \underbrace{\sum}_{i=1}^{n} p_{i} \underbrace{\sum}_{i=1}^{n}$$

See Art Owen's website for code/R package.