
Bootstrap Methods
Typically we use (asymptotic) theory to derive the sampling distribution of a statistic.
From the sampling distribution, we can obtain the variance, construct con�dence intervals,
perform hypothesis tests, and more.

Challenge:

Basic idea of bootstrapping:

what if the sampling is impossible to obtain or asymptotic theory doesn't hold ?

Use the data to
approximate the sampling distribution of the statistic.

How
? Estimate the sampling distribution by creating a large #f of datasets that we might have

seen and compute the statistic on each of those data sets
.
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“Bootstrap World” where the data analyst knows everything .

idea : treat the sample Y
...... Y as the population .

E . g .
we are intested in the variance of an estimator
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~ In "bootstrap World" we can calculate the exact variance by we have access to the "population"
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In practice ,
estimate variance by repeatedly sampling from the pseudo-population.
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1 Nonparametric Bootstrap
Let  with pdf . Recall, the empirical cdf is de�ned as

Theoretical:

Bootstrap:

The idea behind the nonparametric bootstrap is to sample many data sets from ,
which can be achieved by resampling from the data with replacement.
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##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]    1    2    4    1    2    1    2    3    3     4
##  [2,]    4    4    1    1    1    2    2    1    2     1
##  [3,]    2    2    2    4    5    4    4    5    1     4
##  [4,]    4    4    2    5    2    4    5    5    1     3
##  [5,]    2    1    5    1    3    2    4    2    4     4
##  [6,]    4    4    2    1    4    4    4    3    1     2
##  [7,]    1    1    2    1    2    1    2    2    3     1
##  [8,]    4    4    1    3    3    3    5    1    2     4
##  [9,]    4    1    2    3    2    1    2    1    4     2
## [10,]    3    4    5    1    5    4    5    2    4     1

## [1] 2.5

##  [1] 2.9 2.7 2.6 2.1 2.9 2.6 3.5 2.5 2.5 2.6

# observed data
x <- c(2, 2, 1, 1, 5, 4, 4, 3, 1, 2)

# create 10 bootstrap samples
x_star <- matrix(NA, nrow = length(x), ncol = 10)
for(i in 1:10) {
  x_star[, i] <- sample(x, length(x), replace = TRUE)
}
x_star

# compare mean of the same to the means of the bootstrap samples
mean(x)

colMeans(x_star)

ggplot() + 
  geom_histogram(aes(colMeans(x_star)), binwidth = .05) +
  geom_vline(aes(xintercept = mean(x)), lty = 2, colour = "red") +
  xlab("Sampling distribution of the mean via bootstrapping")
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1.1 Algorithm

Goal: estimate the sampling distribution of a statistic based on observed data .

Let  be the parameter of interest and  be an estimator of . Then,

of NP bootstrap for ind data
.
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↑
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1.2 Justi�cation for iid data

Suppose  are iid with , . Let’s approximate
the distribution of  via the bootstrap.

Theorem: If  are iid with , then
 as  almost surely (a.s).

The proof of this theorem requires two facts:

i. (Berry-Esseen Lemma) Let  be independent with  and 
for . Let . Then,

ii. (Marcinkiewicz-Zygmund SLLN) Let  be a sequence of iid random variables with
 for . Then, for ,

for any  if  and for  if . If  holds for some ,
then .
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Proof :
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1.3 Properties of Estimators

We can use the bootstrap to estimate different properties of estimators.

1.3.1 Standard Error

Recall . We can get a bootstrap estimate of the standard error:

1.3.2 Bias

Recall . We can get a bootstrap estimate of the bias:

Overall, we seek statistics with small se and small bias.

seco : S **- whe * = I (b)
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=>
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1.4 Sample Size and # Bootstrap Samples

If  is too small, or sample isn’t representative of the population,

Guidelines for  –

Best approach –

bootstrap results will be poor no matter how large Bis
.

B = 1000 for estimating bias
,

se

B = 2,000 for CI (depends on 1 : small x
=> &B)

Repeat bootstrap / diffrent seeds
.

If estimates
my different ,

B
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Your Turn
In this example, we explore bootstrapping in the rare case where we know the values for
the entire population. If you have all the data from the population, you don’t need to
bootstrap (or really, inference). It is useful to learn about bootstrapping by comparing to
the truth in this example.

In the package bootstrap is contained the average LSAT and GPA for admission to the
population of  USA Law schools (an old data set – there are now over  law schools).
This package also contains a random sample of size  from this dataset.

##   LSAT  GPA
## 1  576 3.39
## 2  635 3.30
## 3  558 2.81
## 4  578 3.03
## 5  666 3.44
## 6  580 3.07

library(bootstrap)

head(law)

ggplot() +
  geom_point(aes(LSAT, GPA), data = law) +
  geom_point(aes(LSAT, GPA), data = law82, pch = 1)

Wandom sample of size
n=l3

W

full population .



1.4 Sample Size and # Bootstra… 11

We will estimate the correlation  between these two variables and use
a bootstrap to estimate the sample distribution of .

## [1] 0.7763745

## [1] 0.7599979

1. Plot the sample distribution of . Add vertical lines for the true value  and the
sample estimate .

2. Estimate .

3. Estimate the bias of 

# sample correlation
cor(law$LSAT, law$GPA)

# population correlation
cor(law82$LSAT, law82$GPA)

# set up the bootstrap
B <- 200
n <- nrow(law)
r <- numeric(B) # storage

for(b in B) {
  ## Your Turn: Do the bootstrap!
}

↓correlation

for replicates .
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1.5 Bootstrap CIs

We will look at �ve different ways to create con�dence intervals using the boostrap and
discuss which to use when.

1. Percentile Bootstrap CI

2. Basic Bootstrap CI

3. Standard Normal Bootstrap CI

4. Bootstrap 

5. Accelerated Bias-Corrected (BCa)

Key ideas:

four
&&°

ne

adjusted for skewness

& When you say used "bootstrapping" to estimate a CI
,

need to say which one
.

& for new whatever you are bootstrapping needs to be independent .

③ Bootstrapping is a attempt to simulate replication
.

(think about interpatio of CI) .
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1.5.1 Percentile Bootstrap CI

Let  be bootstrap replicates and let  be the  quantile of .

Then, the  Percentile Bootstrap CI for  is

In R, if bootstrap.reps = c( ), the percentile CI is

Assumptions/usage

quantile(bootstrap.reps, c(alpha/2, 1 - alpha/2))

(Probably the one you're thinking off.

Eri

sare
,
Erasz!

If bootstrup dsa is reasonably approximated by a cts doesn't matter if

we include and points .

rector of bootstrap statistics
.

· Widely used because its simple to implement and explain .

· drawback : CI's usually too narrow
, leading to low creage.

- ↳ more often when dias or skewness in bootstrapdsn.

-

Justification (Efron) :



14 1 Nonparametric Bootstrap

1.5.2 Basic Bootstrap CI

The  Basic Bootstrap CI for  is

Assumptions/usage
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1.5.3 Bootstrap  CI (Studentized Bootstrap)

Even if the distribution of  is Normal and  is unbiased for , the Normal distribution is
not exactly correct for .

Additionally, the distribution of  is unknown.

 The bootstrap  interval does not use a Student  distribution as the reference
distribuion, instead we estimate the distribution of a “t type” statistic by resampling.

The  Boostrap  CI is

Overview

To estimate the “t style distribution” for ,
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Assumptions/usage
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1.5.4 BCa CIs

Modi�ed version of percentile intervals that adjusts for bias of estimator and skewness of
the sampling distribution.

This method automatically selects a transformation so that the normality assumption
holds.

Idea:
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The BCa method uses bootstrapping to estimate the bias and skewness then modi�es
which percentiles are chosen to get the appropriate con�dence limits for a given data set.

In summary,
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Your Turn
We will consider a telephone repair example from Hesterberg (2014). Verizon has repair
times, with two groups, CLEC and ILEC, customers of the “Competitive” and
“Incumbent” local exchange carrier.

##    Time Group
## 1 17.50  ILEC
## 2  2.40  ILEC
## 3  0.00  ILEC
## 4  0.65  ILEC
## 5 22.23  ILEC
## 6  1.20  ILEC

Group mean sd min max
CLEC 16.509130 19.50358 0 96.32
ILEC 8.411611 14.69004 0 191.60

library(resample) # package containing the data

data(Verizon)
head(Verizon)

Verizon |>
  group_by(Group) |>
  summarize(mean = mean(Time), sd = sd(Time), min = min(Time), max = 

max(Time)) |>
  kable()

ggplot(Verizon) +
  geom_histogram(aes(Time)) +
  facet_wrap(.~Group, scales = "free")
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1.6 Bootstrapping CIs

There are many bootstrapping packages in R, we will use the boot package. The function
boot generates  resamples of the data and computes the desired statistic(s) for each
sample. This function requires 3 arguments:

1. data = the data from the original sample (data.frame or matrix).
2. statistic = a function to compute the statistic from the data where the �rst

argument is the data and the second argument is the indices of the obervations in the
boostrap sample.

3.  = the number of bootstrap replicates.

ggplot(Verizon) +
  geom_boxplot(aes(Group, Time))
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If we want to get Bootstrap CIs, we can use the boot.ci function to generate the
different nonparametric bootstrap con�dence intervals.

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 2000 bootstrap replicates
## 
## CALL : 
## boot.ci(boot.out = boot.ilec, conf = 0.95, type = c("perc", 
"basic", 
##     "bca"))
## 
## Intervals : 
## Level      Basic              Percentile            BCa          
## 95%   ( 7.733,  9.110 )   ( 7.714,  9.091 )   ( 7.755,  9.125 )  
## Calculations and Intervals on Original Scale

library(boot) # package containing the bootstrap function

mean_func <- function(x, idx) {
  mean(x[idx])
}

ilec_times <- Verizon[Verizon$Group == "ILEC",]$Time
boot.ilec <- boot(ilec_times, mean_func, 2000)

plot(boot.ilec)

boot.ci(boot.ilec, conf = .95, type = c("perc", "basic", "bca"))
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##     2.5%    97.5% 
## 7.714075 9.084725

##    97.5%     2.5% 
## 7.738496 9.109147

To get the studentized bootstrap CI, we need our statistic function to also return the
variance of .

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 2000 bootstrap replicates
## 
## CALL : 
## boot.ci(boot.out = boot.ilec_2, conf = 0.95, type = "stud")
## 
## Intervals : 
## Level    Studentized     
## 95%   ( 7.728,  9.183 )  
## Calculations and Intervals on Original Scale

Which CI should we use?

## we can do some of these on our own
## percentile
quantile(boot.ilec$t, c(.025, .975))

## basic
2*mean(ilec_times) - quantile(boot.ilec$t, c(.975, .025))

mean_var_func <- function(x, idx) {
  c(mean(x[idx]), var(x[idx])/length(idx))
}

boot.ilec_2 <- boot(ilec_times, mean_var_func, 2000)
boot.ci(boot.ilec_2, conf = .95, type = "stud")
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1.7 Bootstrapping for the difference of two means

Given iid draws of size  and  from two populations, to compare the means of the two
groups using the bootstrap,

The function two.boot in the simpleboot package is used to bootstrap the difference
between univariate statistics. Use the bootstrap to compute the shape, bias, and bootstrap
sample error for the samples from the Verizon data set of CLEC and ILEC customers.

library(simpleboot)

clec_times <- Verizon[Verizon$Group == "CLEC",]$Time
diff_means.boot <- two.boot(ilec_times, clec_times, "mean", R = 2000)

ggplot() +
  geom_histogram(aes(diff_means.boot$t)) +
  xlab("mean(ilec) - mean(clec)")
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Which con�dence intervals should we use?

Is there evidence that

is rejected?

# Your turn: estimate the bias and se of the sampling distribution

# Your turn: get the chosen CI using boot.ci


