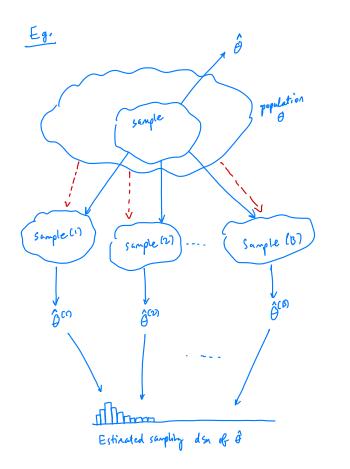
Bootstrap Methods


Typically we use (asymptotic) theory to derive the sampling distribution of a statistic. From the sampling distribution, we can obtain the variance, construct confidence intervals, perform hypothesis tests, and more.

Challenge:

what if the sampling is impossible to obtain or asymptotic theory doesn't hold?


Basic idea of bootstrapping:

Use the data to approximate the sampling distribution of the statistic. How? Estimate the sampling distribution by creating a large # of datasets that we might have seen and compute the statistic on each of those data sets.

Goals: estimate bias, se, CI's when

- 1) The is doubt about whether distributional assumptions are met.
- 2 perc is doubt about whether asymptotic results are valid.
- 3) Theory to derive days 13 too hard.

"Bootstrap World" where the data analyst knows everything.

iden: treat the surple Y, ..., Yn as the population.

1 Nonparametric Bootstrap

Let $Y_1, \ldots, Y_n \sim F$ with pdf f(y). Recall, the empirical cdf is defined as

$$F_{n}(y) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(Y_{i} \leq y) \quad y \in \mathbb{R}.$$

$$f$$

$$M \in \mathcal{F} \quad \text{and} \quad as \quad n \to \infty, \quad F_{n} \to F$$

Theoretical: Sample YNF, use Y11-5/n to compute Fn

Bootstrap: Sample Y* ~F, use Y* Y* to impute F.*

A of size n

The idea behind the nonparametric bootstrap is to sample many data sets from $F_n(y)$, which can be achieved by resampling from the data with replacement.

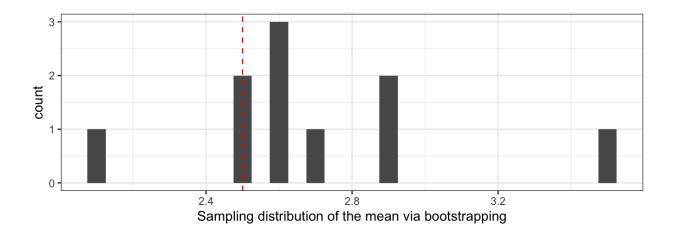
How many possible bootstrap samples? n^n Are Y_1^*, \dots, Y_n^* independent? $P(Y_1^*=a_{-y}Y_n^{**}=b) = \frac{\sum_{i=1}^{n} I(Y_1^{*}=a_{-i})}{n} = \frac{\sum_{i=1}^{n} I(Y_1^{*}=a_{-i})}{n} = P(Y_1^{*}=a_{-i}) P(Y_2^{*}=b) => y es$ Do we always wat this? No! More bater

```
# observed data
x <- c(2, 2, 1, 1, 5, 4, 4, 3, 1, 2)
# create 10 bootstrap samples
x_star <- matrix(NA, nrow = length(x), ncol = 10)
for(i in 1:10) {
    x_star[, i] <- sample(x, length(x), replace = TRUE)
}
x_star</pre>
```

##		[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]
##	[1,]	1	2	4	1	2	1	2	3	3	4
##	[2,]	4	4	1	1	1	2	2	1	2	1
##	[3,]	2	2	2	4	5	4	4	5	1	4
##	[4,]	4	4	2	5	2	4	5	5	1	3
##	[5,]	2	1	5	1	3	2	4	2	4	4
##	[6,]	4	4	2	1	4	4	4	3	1	2
##	[7,]	1	1	2	1	2	1	2	2	3	1
##	[8,]	4	4	1	3	3	3	5	1	2	4
##	[9,]	4	1	2	3	2	1	2	1	4	2
##	[10,]	3	4	5	1	5	4	5	2	4	1

compare mean of the same to the means of the bootstrap samples
mean(x)

[1] 2.5


colMeans(x_star)

Aren 1 * (10)

ê

[1] 2.9 2.7 2.6 2.1 2.9 2.6 3.5 2.5 2.5 2.6

```
ggplot() +
geom_histogram(aes(colMeans(x_star)), binwidth = .05) +
geom_vline(aes(xintercept = mean(x)), lty = 2, colour = "red") +
xlab("Sampling distribution of the mean via bootstrapping")
```


1.1 Algorithm of NP bootstrap for iid data.

Goal: estimate the sampling distribution of a statistic based on observed data $\mathfrak{F}_1, \ldots, \mathfrak{F}_n$. Let θ be the parameter of interest and $\hat{\theta}$ be an estimator of θ . Then,

For
$$b = l_{1-2}B$$

() Sample $y_{1}^{*(b)} = (y_{1}^{*(b)}, y_{n}^{*(b)})$ by sampling w/ replacement from the sample dota
(i.e. sample from For)
(2) Loompute $\hat{\theta}^{*(b)} = \hat{\theta}(y_{1}^{*(b)})$
 $\hat{1}$
estimate of θ based on \hat{b}^{n} bootstrap sample.

Using
$$\hat{\theta}_{1,...,\theta}^{*(i)}$$
 we can
- estimate the campling data of $\hat{\theta}$ (historgram of $\hat{\theta}_{1,...,\theta}^{*(i)}$).
- estimate the SE of $\hat{\theta}$ (st. dev. of $\hat{\theta}_{1,...,\theta}^{*(i)}$).
- estimate a CF (many ways).

etc.

1.2 Justification for iid data

Suppose Y_1, \ldots, Y_n are iid with $\mathbf{E}Y_1 = \mu \in \mathbb{R}$, $\operatorname{Var}(Y_1) = \sigma^2 \in (0, \infty)$. Let's approximate the distribution of $T_n = \sqrt{n}(\bar{Y}_n - \mu)$ via the bootstrap.

Theorem: If Y_1, Y_2, \ldots are iid with $\operatorname{Var}(Y_1) = \sigma^2 \in (0, \infty)$, then $\sup_{y \in \mathbb{R}} |P(T_n \leq y) - P_*(T_n^* \leq y)| \equiv \Delta_n \to 0 \text{ as } n \to \infty \text{ almost surely (a.s).}$ hire $Y = \tilde{\Sigma}_{10}, \chi_n^*$ draw $Y_{i_1}^*, \ldots, Y_n^*$ bootstrop sample. Then, horistrophything. $\longrightarrow f_*(Y_1^* = Y_1) = \rho(Y_i^* = Y_i \mid Y) = \frac{1}{n}$ $1 \leq i \leq n$ producting. $\longrightarrow f_*(Y_1^* = Y_1) = \rho(Y_i^* = Y_i \mid Y) = \frac{1}{n}$ $1 \leq i \leq n$ the bootstrop version of T_n is $T_n^* = \sqrt{n}(\overline{Y}_n^* - E_*Y_i^*) = \sqrt{n}(\overline{Y}_n^* - \overline{Y}_n)$ where $E_*[Y_i^*] = E[Y_i^*|Y] = \sum_{i \leq i} \frac{1}{n} Y_i = \overline{Y}_n$ also $E_*(\overline{Y}_n^*) = E_*(\frac{1}{n} \sum_{i \leq i} Y_i^*) = \frac{1}{n} \sum_{i \geq i} E_*Y_i^* = \overline{Y}_n$ bootstrop version of Y_{10}^*, \ldots, Y_n^* exist, but hard to compute directly by a modestrop complex \Rightarrow we simulation to extract. Also, $f_*(T_n^* = Y) - \rho(T_n^* \leq Y_i \mid Y)$ approximates $\rho(T_n \leq Y)$, $Y \in \mathbb{R}$ (Theorem).

The proof of this theorem requires two facts:

i. (Berry-Esseen Lemma) Let Y_1, \ldots, Y_n be independent with $\mathbf{E}Y_i = 0$ and $\mathbf{E}|Y_i|^3 < \infty$ for $i = 1, \ldots, n$. Let $\sigma_n^2 = n \operatorname{Var}(\bar{Y}_n) = n^{-1} \sum_{i=1}^n \mathbf{E}Y_i^2 > 0$. Then,

$$\sup_{y\in\mathbb{R}}\left|P\left(\frac{\sqrt{n}\bar{Y_n}}{\sigma_n}\leq y\right)-\Phi(y)\right|=\sup_{x\in\mathbb{R}}\left|P\left(\sqrt{n}\bar{Y_n}\leq x\right)-\Phi\left(\frac{x}{\sigma_n}\right)\right|\leq \frac{2.75}{n^{3/2}\sigma_n^3}\sum_{i=1}^n\mathrm{E}|Y_i|^3.$$

M-2

ii. (Marcinkiewicz-Zygmund SLLN) Let X_i be a sequence of iid random variables with $\mathrm{E}|X_i|^p < \infty$ for $p \in (0, 2)$. Then, for $S_n = \sum_{i=1}^n X_i$,

$$rac{1}{n^{1/p}}(S_n-nc) o 0 ext{ as } n o \infty ext{ almost surely } (*)$$

 $\begin{array}{l} \text{for any } c\in \mathbb{R} \text{ if } p\in (0,1) \text{ and for } c=\mathrm{E}X_1 \text{ if } p\in [1,2). \text{ If } (*) \text{ holds for some } c\in \mathbb{R}, \\ \text{then } \mathrm{E}|X_1|^p<\infty. \end{array}$

Specifically, we will ase that if
$$\xi_{i}$$
 and ξ_{i} and ξ_{i} E_{i} ξ_{i} and ξ_{i} E_{i} ξ_{i} ξ_{i}

$$\begin{split} & \Pr_{\text{trial}} \quad \sum_{\substack{y \in V \\ y \in V}} \left| P(T_{x} \le y) - P_{x}(T_{x}^{*} \le y) \right| \leq \sup_{\substack{y \in V \\ y \in V}} \left| P(T_{x} \le y) - \overline{P}(T_{x}^{*} \le y) - \overline{P}(T_{x}^{*} \le y) \right| \leq \sum_{\substack{y \in V \\ y \in V}} \left| P(T_{x} \le y) - \overline{P}(T_{x}^{*} \le y) \right| \leq \sum_{\substack{y \in V \\ y \in V}} \left| P(T_{x} \le y) - \overline{P}(T_{x}^{*} \le y) \right| \leq \sum_{\substack{y \in V \\ y \in V}} \left| P(T_{x} \le y) - \overline{P}(T_{x}^{*} \le y) \right| \leq \sum_{\substack{x \in V \\ y \in V}} \left| P(T_{x} \le y) - \overline{P}(T_{x}^{*} \le y) \right| \leq \sum_{\substack{x \in V \\ y \in V}} \left| P(T_{x} \le y) - \overline{P}(T_{x}^{*} \le y) \right| \leq \sum_{\substack{x \in V \\ y \in V}} \left| P(T_{x} \le y) - \overline{P}(T_{x}^{*} \le y) \right| \leq \sum_{\substack{x \in V \\ y \in V}} \left| P_{x}(T_{x}^{*} \le y) - \overline{P}(T_{x}^{*} \le y) \right| \leq \sum_{\substack{x \in V \\ y \in V}} \left| P_{x}(T_{x}^{*} \le y) - \overline{P}(T_{x}^{*} \le y) \right| \leq \sum_{\substack{x \in V \\ y \in V}} \left| P_{x}(T_{x}^{*} \le y) - \overline{P}(T_{x}^{*} \le y) \right| \leq \sum_{\substack{x \in V \\ y \in V}} \left| P_{x}(T_{x}^{*} \le y) - \overline{P}(T_{x}^{*} \le y) \right| \leq \sum_{\substack{x \in V \\ y \in V}} \left| P_{x}(T_{x}^{*} \le y) - \overline{P}(T_{x}^{*} \le y) \right| \leq \sum_{\substack{x \in V \\ y \in V}} \left| P_{x}(T_{x}^{*} \le y) - \overline{P}(T_{x}^{*} = y) \right| = \sum_{\substack{x \in V \\ y \in V}} \left| P_{x}(T_{x}^{*} \le y) - \overline{P}(T_{x}^{*} = y) \right| = \sum_{\substack{x \in V \\ y \in V}} \left| P_{x}(T_{x}^{*} \le y) - \overline{P}(T_{x}^{*} = y) \right| = \sum_{\substack{x \in V \\ y \in V}} \left| P_{x}(T_{x}^{*} = y) - \overline{P}(T_{x}^{*} = y) \right| = \sum_{\substack{x \in V \\ y \in V}} \left| P_{x}(T_{x}^{*} = y) - \overline{P}(T_{x}^{*} = y) \right| = \sum_{\substack{x \in V \\ y \in V}} \left| P_{x}(T_{x}^{*} = y) - \overline{P}(T_{x}^{*} = y) \right| = \sum_{\substack{x \in V \\ y \in V}} \left| P_{x}(T_{x}^{*} = y) - \overline{P}(T_{x}^{*} = y) \right| = \sum_{\substack{x \in V \\ y \in V}} \left| P_{x}(T_{x}^{*} = y) - \overline{P}(T_{x}^{*} = y) \right| = \sum_{\substack{x \in V \\ y \in V}} \left| P_{x}(T_{x}^{*} = y) - \overline{P}(T_{x}^{*} = y) \right| = \sum_{\substack{x \in V \\ y \in V}} \left| P_{x}(T_{x}^{*} = y) - \overline{P}(T_{x}^{*} = y) \right| = \sum_{\substack{x \in V \\ y \in V}} \left| P_{x}(T_{x}^{*} = y) - \overline{P}(T_{x}^{*} = y) \right| = \sum_{\substack{x \in V \\ y \in V}} \left| P_{x}(T_{x}^{*} = y) - \overline{P}(T_{x}^{*} = y) \right| = \sum_{\substack{x \in V \\ y \in V}} \left| P_{x}(T_{x}^{*} = y) - \overline{P}(T_{x}^{*} = y) \right| = \sum_{\substack{x \in V \\ y \in V}} \left| P_{x}(T_{x}^{*} = y) - \overline{P}(T_{x}^{*} = y) \right| = \sum_{\substack{x \in V \\ y \in V}} \left| P_{x}(T_{x}^{*} = y) - \overline{P}(T_{x}^{*} = y) \right| = \sum_{\substack{x \in V \\ y \in V}} \left| P_{x}(T_{x}^{*} = y) - \overline{P$$

1.3 Properties of Estimators

We can use the bootstrap to estimate different properties of estimators.

1.3.1 Standard Error

Recall $se(\hat{\theta}) = \sqrt{Var(\hat{\theta})}$. We can get a **bootstrap** estimate of the standard error:

$$Se(\hat{\theta}) = \int \frac{1}{B} \frac{B}{\hat{z}^{z_1}} (\hat{\theta}^{*(b)} - \bar{\theta}^{*})^2 \quad \text{where} \quad \bar{\theta}^{*} = \frac{1}{B} \frac{B}{\hat{\theta}^{z_1}} \hat{\theta}^{(b)}$$

1.3.2 Bias

Recall $bias(\hat{\theta}) = E[\hat{\theta} - \theta] = E[\hat{\theta}] - \theta$. We can get a **bootstrap** estimate of the bias:

bias (ô) =
$$\overline{\partial} * - \overline{\partial}$$

1 based
computed on original data
from Dootstrep
scriptes

Overall, we seek statistics with small se and small bias.

$$MSE = Variance + Biss^2 = E\left[\left(\hat{\theta} - \theta\right)^2\right]$$

=> Bootstrap providure to estimate the MSE:
() Compuse
$$\hat{\theta}$$
 from original data $Y = (Y_{1,1}, Y_n)$
(2) Take B bootstrap scoples of size n from data $Y^{(n)}_{(1,1)}, \frac{Y^{(n)}}{1, \dots, 1}$
(3) Compute $\hat{\theta}^{(n)}$ estimate of θ obtained from $b^{(n)}$ BS scopple
(4) $\hat{MSE} = \frac{1}{B} \sum_{b=1}^{B} (\hat{\theta}^{(b)} - \hat{\theta})^{2}$

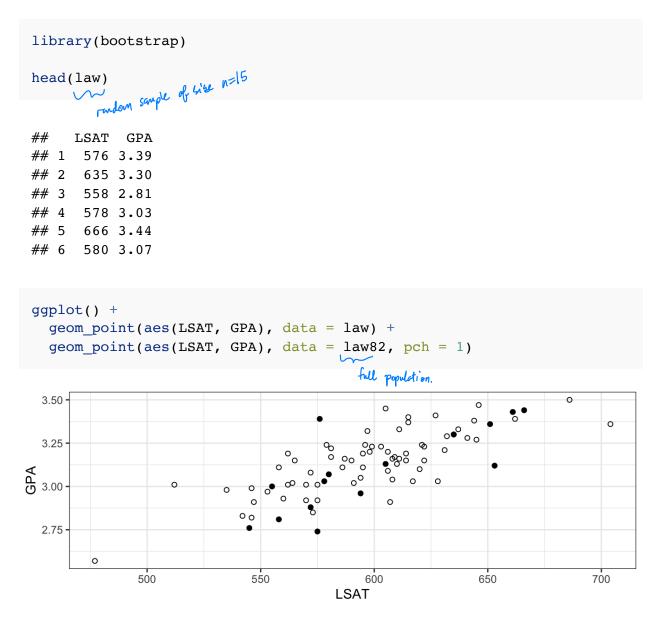
1.4 Sample Size and # Bootstrap Samples

 $n = ext{sample size} \quad \& \quad B = \# ext{ bootstap samples}$

If n is too small, or sample isn't representative of the population,

bootstrap results will be poor no matter how longe B is.

Guidelines for B –


$$B \approx 1000$$
 for estimatiz bias, se
 $B \approx 2000$ for CI (depends and : small $\alpha => 7B$)

Best approach -

Your Turn

In this example, we explore bootstrapping in the rare case where we know the values for the entire population. If you have all the data from the population, you don't need to bootstrap (or really, inference). It is useful to learn about bootstrapping by comparing to the truth in this example.

In the package bootstrap is contained the average LSAT and GPA for admission to the population of 82 USA Law schools (an old data set – there are now over 200 law schools). This package also contains a random sample of size n = 15 from this dataset.

1.4 Sample Size and # Bootstra...

V. correlation We will estimate the correlation $\theta = \rho(LSAT, GPA)$ between these two variables and use a bootstrap to estimate the sample distribution of θ .

```
# sample correlation
cor(law$LSAT, law$GPA)
```

```
## [1] 0.7763745
```

```
# population correlation
cor(law82$LSAT, law82$GPA)
```

```
## [1] 0.7599979
```

```
# set up the bootstrap
B <− 200
n <- nrow(law)</pre>
r <- numeric(B) # storage for replicates.
for(b in B) {
  ## Your Turn: Do the bootstrap!
}
```

- 1. Plot the sample distribution of $\hat{\theta}$. Add vertical lines for the true value θ and the sample estimate $\hat{\theta}$.
- 2. Estimate $sd(\hat{\theta})$.
- 3. Estimate the bias of $\hat{\theta}$

1.5 Bootstrap CIs

We will look at five different ways to create confidence intervals using the boostrap and discuss which to use when.

- 1. Percentile Bootstrap CI
- 2. Basic Bootstrap CI

BAStandard Normal Brotstrap Ch

- 4. Bootstrap t
- 5. Accelerated Bias-Corrected (BCa) "
 adjusted for stewness

Key ideas:

1.5.1 Percentile Bootstrap CI (Probably the one you're thinking of).

Let $\hat{\theta}^{(1)}, \ldots, \hat{\theta}^{(B)}$ be bootstrap replicates and let $\hat{\theta}_{\alpha/2}$ be the $\alpha/2$ quantile of $\hat{\theta}^{(1)}, \ldots, \hat{\theta}^{(B)}$. Then, the $100(1-\alpha)\%$ Percentile Bootstrap CI for θ is

(
$$\hat{\theta}_{a|a}$$
, $\hat{\theta}_{1-a/2}$)
t if boothrop dan is reasonably approximated by a cossistive doesn't matter if
tre include and points.

In R, if bootstrap.reps = $c(\hat{\theta}^{(1)}, \dots, \hat{\theta}^{(B)})$, the percentile CI is (victor of loootstrap statility.

quantile(bootstrap.reps, c(alpha/2, 1 - alpha/2))

Assumptions/usage

Justification (Efron):
Justification (Efron):
Assume the existence of an increasing transformation
$$g$$
 set. $P[g(\hat{\theta}) - g(\theta) \le x] = H(x)$
 \Rightarrow "bootstrap world": $P_x [g(\hat{\theta}^*) - g(\hat{\theta}) \le x] \approx H(x)$. (π).
Suppose g is backed to $P[g^{-1}(g(\hat{\theta}) - x) \le \theta] = H(x)$. The set this pobability to $1-\alpha$.
 $P[g^{-1}(g(\hat{\theta}) - H^{-1}(1-x)) \le \theta] = 1-\alpha \implies 4$ q is backed this is a re-sided CI V concept problem
 $(g^{-1}(g(\hat{\theta}) - H^{-1}(1-x)), \sigma)$. (reper bund version
 $Sim(W)$
 \underline{Coold} : Show $\overline{g}'(g(\hat{\theta}) - H^{-1}(1-x))$ is estimated by the laft and point q a percentile bootstrap intrue $\overline{\theta}_{x}$
 $\alpha = P_{x}(\widehat{\theta}^{*} \le \widehat{\theta}_{x}) = P_{x}(q(\widehat{\theta}^{*}) \le g(\widehat{\theta}_{x}) - g(\widehat{\theta})) \approx H(g(\widehat{\theta}_{x}) - g(\widehat{\theta}))$ by (π) .
 $\overline{H}'(\alpha) \approx q(\widehat{\theta}_{x}) - g(\widehat{\theta}) \Rightarrow \overline{g}'(H^{-1}(\alpha) + g(\widehat{\theta})) \approx \widehat{\theta}_{x}$
 $\frac{1}{g^{-1}(g(\widehat{\theta}) - H^{-1}(1-x))}$.

1.5.2 Basic Bootstrap CI (Corrects for bias)

based in risiduals. The $100(1 - \alpha)\%$ Basic Bootstrap CI for θ is $\begin{pmatrix} \hat{\theta} - [\hat{\theta}_{1-\alpha/2} - \hat{\theta}], \hat{\theta} - [\hat{\theta}_{\alpha/2} - \hat{\theta}] \end{pmatrix} = (2\hat{\theta} - \hat{\theta}_{1-\alpha/2}, 2\hat{\theta} - \hat{\theta}_{2/2}),$ \hat{f} \hat{f}

$$\mathbb{P}\Big(\mathcal{E}_{\alpha/2} < \hat{\theta} - \theta < \mathcal{E}_{1-\alpha/2}\Big) = 1-\alpha \implies (1-\alpha) \log^2 \alpha \text{ (I is } \left(\hat{\theta} - \mathcal{E}_{1-\alpha/2}^*, \hat{\theta} - \mathcal{E}_{\alpha/2}^*\right)$$

Assumptions/usage

.*

· corrects for bias, but stightly hoder to explain.

1.5.3 Bootstrap t CI (Studentized Bootstrap) Consider $Z = \frac{\hat{\theta} - E(\hat{\theta})}{\cos(\hat{\theta})}$

Even if the distribution of $\hat{\theta}$ is Normal and $\hat{\theta}$ is unbiased for θ , the Normal distribution is not exactly correct for z.

because versed to estimate $Se(\hat{\theta}) \Longrightarrow t^{*} = \frac{\hat{\theta} - E(\hat{\theta})}{S\hat{e}(\hat{\theta})} \sim t_{n-1}?$ NO Additionally, the distribution of $\hat{se}(\hat{\theta})$ is unknown.

so we cannot claim to vtn-1 even vier ONNormal!

 \Rightarrow The bootstrap t interval does not use a Student t distribution as the reference distribution, instead we estimate the distribution of a "t type" statistic by resampling.

The $100(1-\alpha)\%$ Boostrap t CI is

$$(\hat{\theta} - t^*_{1,\alpha/2} \cdot \hat{se}(\hat{\theta}), \hat{\theta} + t^*_{\alpha/2} \hat{se}(\hat{\theta}))$$

$$= quantile of the the test in a te$$

Overview bool strap "t-type" stratistic.

$$t - type \ statistic: \ t^{(1)} = \frac{\hat{\theta}^{(1)} - \hat{\theta}}{\underbrace{\hat{se}(\hat{\theta}^{(1)})}_{= bootstrap}}, \dots, \ t^{(B)} = \frac{\hat{\theta}^{(0)} - \hat{\theta}}{\underbrace{\hat{se}(\hat{\theta}^{(B)})}_{= bootstrap}}$$

To estimate the "t style distribution" for θ ,

(1) Compute
$$\hat{\theta}$$

(2) For each replicate $b=1,..., B$
(a) simple $w/$ replacement from g_{r} , $g_{r}^{(L)} = (g_{1}^{(L)},...,g_{n}^{(b)})$
(b) compute $\hat{\theta}^{(L)}$
(c) For each replicate $r=1,..., R$
i. sample $v/$ replacement from $g_{r}^{(L)}$, $g_{r}^{(L)(r)} = (g_{1}^{(L)(r)}, g_{n}^{(L)(r)})$
ii compute $\hat{\theta}^{(L)(r)}$
(d) compute $\hat{se}(\hat{\theta}^{(L)}) = sd(\hat{\theta}^{(S)(c)}, ..., \hat{\theta}^{(L)(R)})$
(e) compute t -style statistic $t^{(L)} = \frac{\hat{\theta}^{(L)} - \hat{\theta}}{\hat{se}(\hat{\theta}^{(D)})}$
(3) git quantiles $t_{\alpha(L)}^{*}, t_{1-\alpha/2}^{*}$
(4) Compute CI.

Assumptions/usage

- Computationally intensive - Not donly anything for bias/skewness in bootstrap dsn. - Need ô independent of Sê(ô).

This idea is based on "pivotal quantities" = a function of observations and parameters whose probability dan does not depend on the parameters.

eng.
$$\frac{\overline{X} - \mu}{s/v_n} \sim t_{n-1}$$

t doesn't deput on μ .

You could seeke oper pivotal quantities, e.g. $\frac{(n-1)s^2}{6^2} \sim \chi^2_{n-1} \quad if \quad y_i \quad iid \quad N(\mu_i 6^2).$ $\Rightarrow \left(\frac{(n-1)s^2}{\chi^2_{1-\alpha_{1/2}}}, \frac{(n-1)s^2}{\chi^2_{\alpha_{1/2}}}\right) \quad would \quad be \quad a \quad (1-\alpha)(00\% \ CI \quad for \quad 6^2.$

Bootstrap rersion of this, do not assume V; ⁱⁱⁱN (4,6²). We would now read to estimate a X²-type quartile. 1.5 Bootstrap CIs

Modified version of percentile intervals that adjusts for bias of estimator and skewness of the sampling distribution.

This method automatically selects a transformation so that the normality assumption holds.

Idea:

Assume for exist a monotonically hireasing function
$$q$$
 and constants a, b s.t.

$$\frac{g(\hat{\theta}) - g(\theta)}{1 + ag(\theta)} + b \sim N(0, 1) \text{ where } 1 + ag(\theta) = 0.$$
Let Z_p be the 100 p^r percentile of the studied Normal $\stackrel{\text{to est}}{\Longrightarrow} \stackrel{(I)}{=} -Z_p < \frac{g(\hat{\theta}) - g(\theta)}{1 + ag(\theta)} + b < Z_p$

$$\stackrel{(I)}{\Longrightarrow} \frac{g(\hat{\theta}) + b - Z_p}{1 - a(b - Z_p)} < g(\theta) < \frac{g(\hat{\theta}) + b + Z_p}{1 - a(b + Z_p)}$$
Is $a = 100 (1 - a) \% tr F p = 1 - a/2.$

$$\begin{split} \begin{array}{l} bodstrip \\ tristor! \\ \hline 1 + a g(b) \\ \hline 1 +$$

Given	is and Hoeting - computational Statistics
Assume	U = $\frac{g(\hat{\theta}) - g(\theta)}{1 + ag(\theta)} + b \sim N(\theta, 1)$ where $1 + ag(\theta) = 0$.
	$U = \frac{g(\phi) - g(\phi)}{2} + b \sim N(0, 1) \text{ where } 1 + ag(\phi) = 0.$
	$\cdots \cdots $
"Bootshap	World" $U^* = \underline{q(\hat{\Theta}^*) - q(\hat{\Theta})}_{1+\alpha q(\hat{\Theta})} + b \stackrel{approx}{\sim} N(O, 1),$
•	$\frac{1}{1+\alpha_{g}(\hat{\theta})}$
	For any quantile of a standard Normal,
	$\alpha \approx P^{*} \left[u^{*} \leq z_{\alpha} \right]$
	$= P^{*}\left[\frac{g(\hat{\theta}^{*}) - g(\hat{\theta})}{1 + ag(\hat{\theta})} + b \leq \mathbb{Z}_{\alpha}\right]$
	$\ldots \ldots $
	$= P^{*} \left[\hat{\beta}^{*} \leq \bar{q}^{\prime} \left(q(\hat{\theta}) + (\Xi_{\alpha} - b)(1 + aq(\hat{\theta})) \right) \right]$
	$ = \left\{ \begin{array}{c} B \in \mathcal{G}(\mathcal{G}(\mathcal{O}) + \mathcal{O} \mathbb{Z}_{\alpha} \otimes \mathcal{O}(\mathcal{O}) \right\} \\ \\ \end{array} \right\} $
	$\hat{\theta}_{ol}$
1	Le a quantile firm the bootstrap distribution of $\hat{\theta}^*$, denoted $\hat{\theta}_{d}$ is observable firm the bootstrap dsn
<u>.</u> .	$\overline{q}'\left(q(\hat{\theta}) + (z_{\alpha} - b)(1 + aq(\hat{\theta}))\right) \approx \hat{\theta}_{\alpha}.$
	To use this, consider U : $1-\alpha = P(V = Z_{\alpha})$
	$= \rho \left[\theta < \overline{q} \left(q(\hat{\theta}) + \frac{b - z_{\alpha}}{1 - a(b - z_{\alpha})} \left[1 + a g(\hat{\theta}) \right] \right) \right]$
Ne	this similarity, if we could find β s.t. $b - Z_d = Z_\beta - b$ then the bootstrap principle on Le $(-\alpha(b-Z_n))$
	$1 = 1 + \frac{1}{2} + \frac{1}{2$
	applied to analyde $\theta < \theta_{\beta}$ can be an approximate $(-\alpha \text{ upper CI limbe.})$
	$Z_{\beta} = \frac{b - Z_{\alpha}}{1 - \alpha(b - Z_{\alpha})} + b \implies \beta = \overline{P}\left(\frac{b + Z_{\alpha}}{1 - \alpha(b + Z_{\alpha})} + b\right)$
	programme of N(0,1).
• •	
• •	> O Find as by using formulas from previous page.
	a bouquele B
	. 3. Find the BM quantle of empirical dan of ôt
• •	• • • • • • • • • • • • • • • • • • • •
	Two-sided is similar argumet.
• •	
• •	
• •	

$$\alpha = \frac{\sum_{i=1}^{n} (\hat{\theta}_{(i)} - \hat{\theta}_{-i})^{3}}{6[\sum_{i=1}^{n} (\hat{\theta}_{(i)} - \hat{\theta}_{-i})^{2}]^{3/2}} \quad \text{where } \hat{\theta}_{(i)} \text{ is The mean of } \hat{\theta}_{-i} \text{ 's.} \quad \text{If } \alpha = 0, \text{ don 't} \\ 1 \text{ Nonparametric Bootstrap } adjust for \\ \text{sleewness} \quad \text{sleewness$$

The BCa method uses bootstrapping to estimate the bias and skewness then modifies which percentiles are chosen to get the appropriate confidence limits for a given data set.

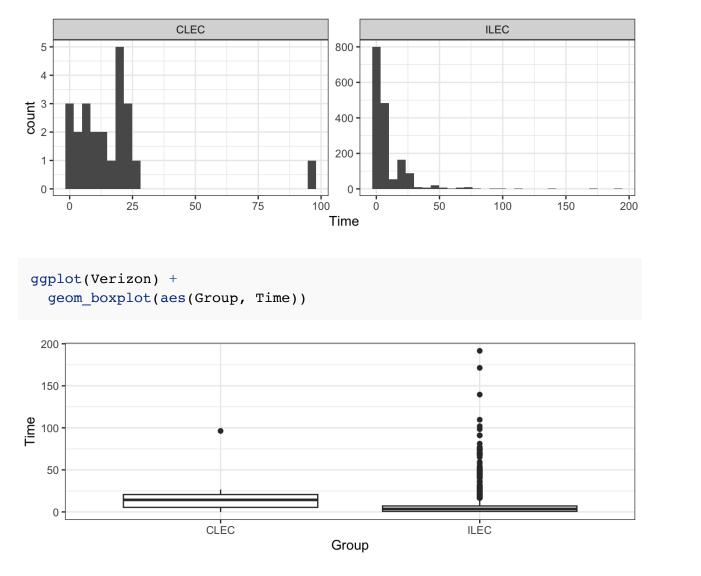
In summary,

18

Has better corrage in empirical studies, but horder to explain.

B(a is file the perutike bootstrop CI, but instead of $(\hat{\Theta}_{\alpha/2}, \hat{\Theta}_{1-\alpha/\alpha})$, choose "better" quantiles to account for bias and stances.

Your Turn


We will consider a telephone repair example from Hesterberg (2014). Verizon has repair times, with two groups, CLEC and ILEC, customers of the "Competitive" and

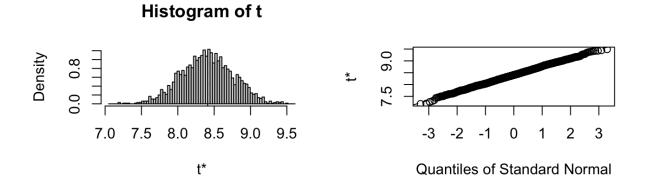
```
"Incumbent" local exchange carrier.
                                                         other Curriers constaners
       Venizon customers
 Verizon required by law to some both at The screeperd.
 library(resample) # package containing the data
 data(Verizon)
 head(Verizon)
 ##
        Time Group
 ## 1 17.50 ILEC
       2.40 ILEC
 ## 2
 ## 3 0.00 ILEC
 ## 4 0.65 ILEC
 ## 5 22.23 ILEC
 ## 6 1.20 ILEC
 Verizon |>
   group_by(Group) |>
   summarize(mean = mean(Time), sd = sd(Time), min = min(Time), max =
          max(Time)) >
```

```
kable()
```

Group	mean	sd	min	max	٨
CLEC	16.509130	19.50358	0	96.32	23
ILEC	8.411611	14.69004	0	191.60	(664

```
ggplot(Verizon) +
  geom_histogram(aes(Time)) +
  facet_wrap(.~Group, scales = "free")
```


1.6 Bootstrapping CIs



There are many bootstrapping packages in R, we will use the boot package. The function boot generates R resamples of the data and computes the desired statistic(s) for each sample. This function requires 3 arguments:

- 1. data = the data from the original sample (data.frame or matrix).
- 2. statistic = a function to compute the statistic from the data where the first argument is the data and the second argument is the indices of the obervations in the boostrap sample.
- 3. R = the number of bootstrap replicates.

obie

```
library(boot) # package containing the bootstrap function
mean_func <- function(x, idx) {
    mean(x[idx])
}
ilec_times <- Verizon[Verizon$Group == "ILEC",]$Time
boot.ilec <- boot(ilec_times, mean_func, 2000)
plot(boot.ilec)
```


If we want to get Bootstrap CIs, we can use the **boot.ci** function to generate the different nonparametric bootstrap confidence intervals.

```
boot.ci(boot.ilec, conf = .95, type = c("perc", "basic", "bca"))
```

```
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 2000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = boot.ilec, conf = 0.95, type = c("perc",
"basic",
       "bca"))
##
##
## Intervals :
## Level
              Basic
                                 Percentile
                                                       BCa
## 95%
         (7.733, 9.110)
                           (7.714, 9.091)
                                                 (7.755, 9.125)
## Calculations and Intervals on Original Scale
```

```
## we can do some of these on our own
## percentile
quantile(boot.ilec$t, c(.025, .975))
```

2.5% 97.5% ## 7.714075 9.084725


```
## basic
2*mean(ilec_times) - quantile(boot.ilec$t, c(.975, .025))
```

```
## 97.5% 2.5%
## 7.738496 9.109147
```

To get the studentized bootstrap CI, we need our statistic function to also return the variance of $\hat{\theta}$.

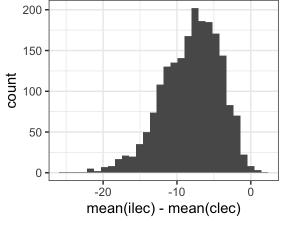
```
mean_var_func <- function(x, idx) {
    c(mean(x[idx]), var(x[idx])/length(idx))
}
boot.ilec_2 <- boot(ilec_times, mean_var_func, 2000)
boot.ci(boot.ilec_2, conf = .95, type = "stud")</pre>
```

```
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 2000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = boot.ilec_2, conf = 0.95, type = "stud")
##
## Intervals :
## Level Studentized
## 95% ( 7.728, 9.183 )
## Calculations and Intervals on Original Scale
```

Which CI should we use?

All rey similar. Maybe Percentile of reading the explain the a judge/jury. Maybe BCA b/c has shown better coverage.

1.7 Bootstrapping for the difference of two means


Given iid draws of size n and m from two populations, to compare the means of the two groups using the bootstrap,

The function two.boot in the simpleboot package is used to bootstrap the difference between univariate statistics. Use the bootstrap to compute the shape, bias, and bootstrap sample error for the samples from the Verizon data set of CLEC and ILEC customers.

```
library(simpleboot)

clec_times <- Verizon[Verizon$Group == "CLEC",]$Time
diff_means.boot <- two.boot(ilec_times, clec_times, "mean", R = 2000)

ggplot() +
  geom_histogram(aes(diff_means.boot$t)) +
  xlab("mean(ilec) - mean(clec)")</pre>
```


losts slaved.

Your turn: estimate the bias and se of the sampling distribution

Which confidence intervals should we use?

Your turn: get the chosen CI using boot.ci

Is there evidence that

$$egin{aligned} H_0: \mu_1-\mu_2 &= 0\ H_a: \mu_1-\mu_2 &< 0 \end{aligned}$$

is rejected?