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2 Parametric Bootstrap
In a nonparametric bootstrap, we

In a parametric bootstrap,

For both methods,

resample the observed data

Create a bootstrapped sample --- Y* did from empirial don En
.

↑

id case
, equidet to resempliyoriginaldata

u/replacement.

Assume a parametric model.

Key idea use a fitted parametric mode F(y) = F(y/4) to estimate F where Testimate using MLE
-

Corcnother method) from data .

Create a bootstrapped sample ,y iid from F(y(4).

i. e . resample from a model / paracters estimated using originaldata
.

D Compute
*1)

for each bootstrapped sample y ,
* (b)

, ..,
y*(b)

& repect procedure B limes to get

1x() 1x(B)E 1 ..,

and make inferences using th result.
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2.1 Bootstrapping for linear regression

Consider the regression model  with .

Two approaches for bootstrapping linear regression models –

1. 

2. 

2.1.1 Bootstrapping the residuals

1. Fit the regression model using the original data

2. Compute the residuals from the regression model,

3. Sample  with replacement from .

4. Create the bootstrap sample

5. Estimate 

6. Repeat steps 2-4  times to create  bootstrap estimates of .

Assumptions:

-

Yp --sYa not iid ! They have difect conditioned means.

Resampling in the bootstrap must be completed oniid quantities.

Bootstrapping the residuals (model based
, perametric) .

paired bootstrapping (case resampling, nonparametric)

/model-based)

to get
errors Ei are assured iid.

based on
model/data bootstrapped data.

Ofied
values

- a fEy,]
Fregressionmodel on bootstrapped data to get B*

③

-

E ; are iid

↳ i
.

t o we have fit a "good" model
.

->

design matrix is fixed.
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2.1.2 Paired bootstrapping

Resample  from the empirical distribution of the pairs .

Assumptions:

2.1.3 Which to use?

1. Standard inferences -

2. Bootstrapping the residuals -

3. Paired bootstrapping -

Cease resampling).

Fit regression model win bootstrapped pairs (yi.)*

yF = k F)B + E , i= 1 .
- yn

Assume (i,:) are
iid from a population.

Can have varying design matrix X .

i. e
.

earlier part of this class,
likelihoed approaches.

Most ofthe time.

- most appropriate for designed experiments where X is fixed in advance.

- model based
,

model must be reasonable fit for the data
.

- useful if complex sampling don for Br maybe some weird nonlinear function maybe.

= robust to model misspecification.

- useful for observational studies where values of predictors son't fixed in advance

=> bootstrap mirrors data generating process .
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Your Turn
This data set is the Puromycin data in R. The goal is to create a regression model about
the rate of an enzymatic reaction as a function of the substrate concentration.

##   conc rate   state
## 1 0.02   76 treated
## 2 0.02   47 treated
## 3 0.06   97 treated
## 4 0.06  107 treated
## 5 0.11  123 treated
## 6 0.11  139 treated

## [1] 23  3

head(Puromycin)

dim(Puromycin)

ggplot(Puromycin) +
  geom_point(aes(conc, rate))

ggplot(Puromycin) +
  geom_point(aes(log(conc), (rate)))
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2.1.4 Standard regression

## 
## Call:
## lm(formula = rate ~ conc, data = Puromycin)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -49.861 -15.247  -2.861  15.686  48.054 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    93.92       8.00   11.74 1.09e-10 ***
## conc          105.40      16.92    6.23 3.53e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 28.82 on 21 degrees of freedom
## Multiple R-squared:  0.6489, Adjusted R-squared:  0.6322 
## F-statistic: 38.81 on 1 and 21 DF,  p-value: 3.526e-06

##                2.5 %   97.5 %
## (Intercept) 77.28643 110.5607
## conc        70.21281 140.5832

## 
## Call:
## lm(formula = rate ~ log(conc), data = Puromycin)

m0 <- lm(rate ~ conc, data = Puromycin)
plot(m0)
summary(m0)

confint(m0)

m1 <- lm(rate ~ log(conc), data = Puromycin)
plot(m1)
summary(m1)
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## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -33.250 -12.753   0.327  12.969  30.166 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  190.085      6.332   30.02  < 2e-16 ***
## log(conc)     33.203      2.739   12.12 6.04e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 17.2 on 21 degrees of freedom
## Multiple R-squared:  0.875,  Adjusted R-squared:  0.869 
## F-statistic: 146.9 on 1 and 21 DF,  p-value: 6.039e-11

##                 2.5 %   97.5 %
## (Intercept) 176.91810 203.2527
## log(conc)    27.50665  38.8987

confint(m1)
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2.1.5 Paired bootstrap

2.1.6 Bootstrapping the residuals

# Your turn
library(boot)

reg_func <- function(dat, idx) {
  # write a regression function that returns fitted beta
}

# use the boot function to get the bootstrap samples

# examing the bootstrap sampling distribution, make histograms

# get confidence intervals for beta_0 and beta_1 using boot.ci

# Your turn
library(boot)

reg_func_2 <- function(dat, idx) {
  # write a regression function that returns fitted beta
  # from fitting a y that is created from the residuals
  
}

# use the boot function to get the bootstrap samples

# examing the bootstrap sampling distribution, make histograms

# get confidence intervals for beta_0 and beta_1 using boot.ci
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3 Bootstrapping Dependent Data
Suppose we have dependent data  generated from some unknown
distribution .

Goal:

Challenge:

We will consider 2 approaches
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Example 3.1 Suppose we observe a time series  which we assume is
generated by an AR(1) process, i.e.,

Why not just move forward with our nonparametric bootstrap procedure?
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3.1 Model-based approach

If we assume an AR(1) model for the data, we can consider a method similar to
bootstrapping residuals for linear regression.

Model-based – the performance of this approach depends on the model being appropriate
for the data.
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3.2 Nonparametric approach

To deal with dependence in the data, we will employ a nonparametric block bootstrap.

Idea:

3.2.1 Nonoverlapping Blocks (NBB)

Consider splitting  in  consecutive blocks of length .

We can then rewrite the data as  with ,
.

Note, the order of data within the blocks must be maintained, but the order of the blocks
that are resampled does not matter.

-

resample data in blocks to
preserve the dependance structure within the blocks.

Carlstein (1986).

6
&

so O

.... ---Y, I - Ye ----- Yn
memo N - -1

Br Ba Bb

= Lef

① Sample nonorlapping blocks B.., BB independently from B
... Bo with replacement to form

prendo data set y* = (B,*, .
.

., BB) .

& estimate statistic of interest from
*

to get *

③ Repeat D-QR times to obtain E*11 ** (R)
to estit don of

-
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3.2.2 Moving Blocks (MBB)

Now consider splitting  into overlapping blocks of adjacent data points of
length .

We can then write the blocks as , .
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3.2.3 Choosing Block Size

If the block length is too short,

If the block length is too long,
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Your Turn
We will look at the annual numbers of lynx trappings for 1821–1934 in Canada. Taken
from Brockwell & Davis (1991).

Goal: Estimate the sample distribution of the mean

## [1] 1538.018

data(lynx)
plot(lynx)

theta_hat <- mean(lynx)
theta_hat
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3.2.4 Independent Bootstrap

We must account for the dependence to obtain a correct estimate of the variance!

The acf (autocorrelation) in the dominant terms is positive, so we are underestimating the
standard error.

library(simpleboot)
B <- 10000

## Your turn: perform the independent bootstap
## what is the bootstrap estimate se?

acf(lynx)



42 3 Bootstrapping Dependent Data

3.2.5 Non-overlapping Block Bootstrap

# function to create non-overlapping blocks
nb <- function(x, b) {
  n <- length(x)
  l <- n %/% b
  
  blocks <- matrix(NA, nrow = b, ncol = l)
  for(i in 1:b) {
    blocks[i, ] <- x[((i - 1)*l + 1):(i*l)]
  }
  blocks
}

# Your turn: perform the NBB with b = 10 and l = 11
theta_hat_star_nbb <- rep(NA, B)
nb_blocks <- nb(lynx, 10)
for(i in 1:B) {
  # sample blocks
  # get theta_hat^*
}

# Plot your results to inspect the distribution
# What is the estimated standard error of theta hat? The Bias?
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3.2.6 Moving Block Bootstrap

# function to create overlapping blocks
mb <- function(x, l) {
  n <- length(x)
  blocks <- matrix(NA, nrow = n - l + 1, ncol = l)
  for(i in 1:(n - l + 1)) {
    blocks[i, ] <- x[i:(i + l - 1)]
  }
  blocks
}

# Your turn: perform the MBB with l = 11
mb_blocks <- mb(lynx, 11)
theta_hat_star_mbb <- rep(NA, B)
for(i in 1:B) {
  # sample blocks
  # get theta_hat^*
}

# Plot your results to inspect the distribution
# What is the estimated standard error of theta hat? The Bias?
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3.2.7 Choosing the Block size

# Your turn: Perform the mbb for multiple block sizes l = 1:12
# Create a plot of the se vs the block size. What do you notice?
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4 Summary
Bootstrap methods are simulation methods for frequentist inference.

Bootstrap methods are useful for

Bootstrap methods can fail when


