2 Parametric Bootstrap

In a nonparametric bootstrap, we resample the observed data

Create a bootstrapped sample yt,-, yt iid finn expirial dan É. 7 iid care, equivalet the resemplity original docta V/ replacement.

In a parametric bootstrap, Assume a parametric model.

Key idea: use a filled permetric model $\hat{F}(y) = F(y|\hat{Y})$ to estimate F where $\hat{\Psi}$ estimate using MLE (or constructioned) from data.

Creake a bootstrapped sample yti,..., yt iid from F(y)Ŷ). i.e. resample from a modul n/ pareneters esourced using original data.

For both methods,

2.1 Bootstrapping for linear regression

Consider the regression model $\underline{Y}_i = \boldsymbol{x}_i^T \boldsymbol{\beta} + \epsilon_i, i = 1, \dots, n$ with $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$.

Resconpling in the bootstrap must be completed on its quantities. Two approaches for bootstrapping linear regression models –

- 1. Bootstrapping the residuals (model based, parametric).
- 2. Paired bootstrapping (case resempling, non premeter 2)

2.1.1 Bootstrapping the residuals (model-based).

- 1. Fit the regression model using the original data f_{α} at $\hat{\beta}$
- errors Ei are assured itd. 2. Compute the residuals from the regression model,

$$\hat{\epsilon}_i = y_i - \hat{y}_i = y_i - oldsymbol{x}_i^T \hat{oldsymbol{eta}}, \quad i=1,\dots,n$$

- 3. Sample $\hat{\epsilon}_1^*, \ldots, \hat{\epsilon}_n^*$ with replacement from $\hat{\epsilon}_1, \ldots, \hat{\epsilon}_n$.

- 6. Repeat steps $\widehat{\boldsymbol{\mathcal{J}}} = \boldsymbol{\mathcal{J}} \boldsymbol{\mathcal{J}} \boldsymbol{\mathcal{J}} \boldsymbol{\mathcal{J}} \boldsymbol{\mathcal{J}}$ times to create \boldsymbol{B} bootstrap estimates of $\hat{\boldsymbol{\beta}}$.

Assumptions:

- E; are iid by i.e. we have fit a "good" model. - design matrix X is fixed.

2.1.2 Paired bootstrapping (case resampling).

Resample $z_i^* = (y_i, \boldsymbol{x}_i)^*$ from the empirical distribution of the pairs (y_i, \boldsymbol{x}_i) .

Fit regression model w/ n bootstrapped pairs
$$(y_i; Z_i)^k$$
.
 $y_i^* = (z_i^*)^T \beta + \xi_i^* = (z_i^*)^T \beta$

Assumptions:

Assume (y;, 2:) are iid from a population. Can have varying design matrix X.

2.1.3 Which to use?

1. Standard inferences - i.e. cortier part of mis class, libelihood approaches.

Most of The time.

2. Bootstrapping the residuals -

- most appropriate for designed experiments where X is fixed in advance.

- model based, model must be reasonable fit for the data.

- useful if complex sampling den for Br mayle some wind non-linear function maybe.

- 3. Paired bootstrapping -
 - robust To model misspectication.
 - useful for observational studies where values of predictors gen't fixed in advance => bootstrap mirrors data generating process.

Your Turn

head(Puromycin)

This data set is the Puromycin data in R. The goal is to create a regression model about the rate of an enzymatic reaction as a function of the substrate concentration.

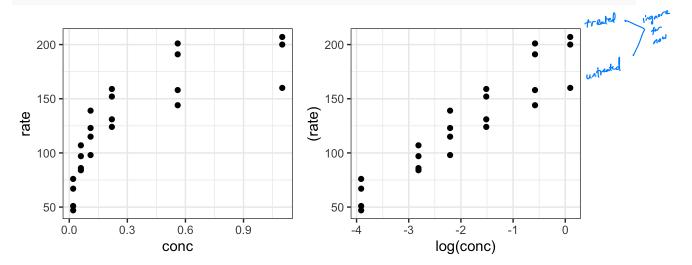
```
## conc rate state
## 1 0.02 76 treated
## 2 0.02 47 treated
## 3 0.06 97 treated
## 4 0.06 107 treated
## 5 0.11 123 treated
## 6 0.11 139 treated
```

```
dim(Puromycin)
```

[1] 23 3

```
ggplot(Puromycin) +
  geom_point(aes(conc, rate))
```

```
ggplot(Puromycin) +
  geom_point(aes(log(conc), (rate)))
```



2.1.4 Standard regression

```
m0 <- lm(rate ~ conc, data = Puromycin)
plot(m0)
summary(m0)</pre>
```

```
##
## Call:
## lm(formula = rate ~ conc, data = Puromycin)
##
## Residuals:
##
      Min
               10 Median
                               3Q
                                      Max
## -49.861 -15.247 -2.861 15.686 48.054
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 93.92 8.00 11.74 1.09e-10 ***
## conc
               105.40 16.92 6.23 3.53e-06 ***
## ___
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 28.82 on 21 degrees of freedom
## Multiple R-squared: 0.6489, Adjusted R-squared: 0.6322
## F-statistic: 38.81 on 1 and 21 DF, p-value: 3.526e-06
confint(m0)
##
                 2.5 %
                         97.5 %
## (Intercept) 77.28643 110.5607
## conc
             70.21281 140.5832
m1 <- lm(rate ~ log(conc), data = Puromycin)</pre>
plot(m1)
summary(m1)
##
## Call:
```

lm(formula = rate ~ log(conc), data = Puromycin)

```
##
## Residuals:
              1Q Median 3Q
##
      Min
                                    Max
## -33.250 -12.753 0.327 12.969 30.166
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 190.085 6.332 30.02 < 2e-16 ***
## log(conc)
              33.203
                          2.739 12.12 6.04e-11 ***
## ___
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17.2 on 21 degrees of freedom
## Multiple R-squared: 0.875, Adjusted R-squared: 0.869
## F-statistic: 146.9 on 1 and 21 DF, p-value: 6.039e-11
```

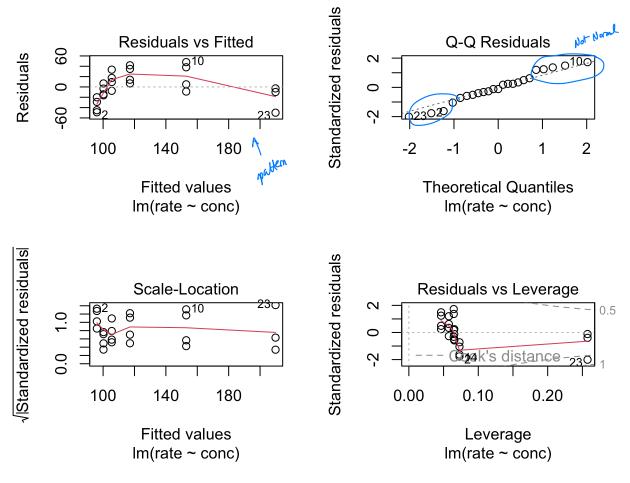
confint(m1)

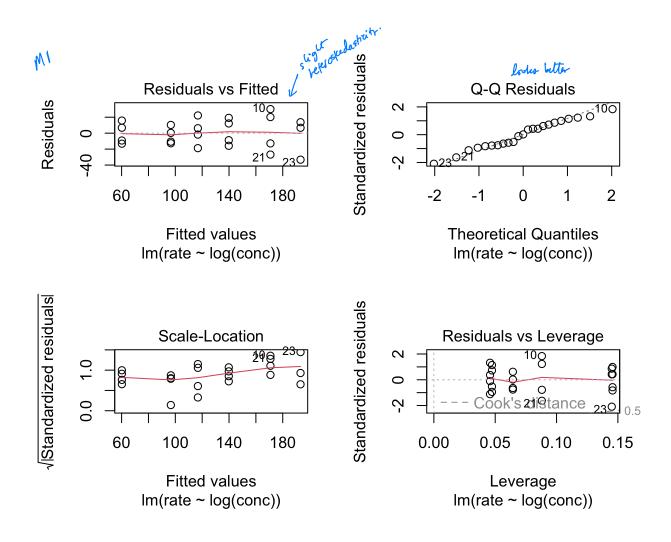
 ##
 2.5 % 97.5 %

 ## (Intercept) 176.91810 203.2527

 ## log(conc)
 27.50665 38.8987

 # Fisher Infernation.





2.1.5 Paired bootstrap

```
# Your turn
library(boot)
reg_func <- function(dat, idx) {
    # write a regression function that returns fitted beta
}
    gr write your our is fre.
# use the boot function to get the bootstrap samples
# examing the bootstrap sampling distribution, make histograms
# get confidence intervals for beta_0 and beta_1 using boot.ci
```

2.1.6 Bootstrapping the residuals

```
# Your turn
library(boot)
reg_func_2 <- function(dat, idx) {
    # write a regression function that returns fitted beta
    # from fitting a y that is created from the residuals
}
# use the boot function to get the bootstrap samples
# examing the bootstrap sampling distribution, make histograms
# get confidence intervals for beta_0 and beta_1 using boot.ci
```

3 Bootstrapping Dependent Data

Suppose we have dependent data $\boldsymbol{y} = (y_1, \ldots, y_n)$ generated from some unknown distribution $F = F_{\boldsymbol{Y}} = F_{(Y_1, \ldots, Y_n)}$.

No longer assuming Y, ,..., Y, independent. Les could be time serves, spatial, network, etc.

Goal:

Challenge:

Since Yi's are dependent it is inappropriate to use The iid bootstrap.
Bootstrapped samples would no longer reproduce the data genoting process.
(and sampling independenting from
$$\hat{F}_n$$
 no longer mimics drawing original sample from F).

We will consider 2 approaches

Model -based (parametric).
 Block bootstrap (nonperametric).

Example 3.1 Suppose we observe a time series $\mathbf{Y} = (Y_1, \ldots, Y_n)$ which we assume is generated by an AR(1) process, i.e.,

This was for m-dependent process, which is a very strong assumption! Under more realistic process, may be even worse.

3.1 Model-based approach

If we assume an AR(1) model for the data, we can consider a method similar to bootstrapping residuals for linear regression.

(1) Estimate à from data (fit he model). (a) before estimated "innovations" $\hat{e}_t = Y_t - \hat{\alpha} Y_{t-1}, t = 2,..., n$ and $\hat{e} = \frac{1}{n-1} \hat{\Sigma} \hat{e}_{\pm}$ (3) Define the residuals as cartered Mnovations $\hat{\mathcal{E}}_{t} = \hat{\mathcal{E}}_{\perp} - \overline{\hat{\mathcal{E}}} \quad \left[E\mathcal{E}_{i} = o \right]$ (4) For r=1,..,R a) Create a bootstrap sample $\hat{\xi}_{0,...,}^{\star}$ $\hat{\xi}_{n}^{\star}$ by randomly sampling n+1 values for the n-1 values $\hat{\mathcal{E}}_{4}$, $t=\lambda_{1-n}$. b) Construct perudo data Y*= (y*, ..., y*) from $y_0^* = \hat{\xi}_0^*, \quad y_t^* = \hat{d} y_{t-1}^* + \hat{\xi}_t^*, \quad t = l_{1,-y_1}^*.$ c) define at as the estimate of a from "" (5) Isn of a " is bootstrap estimate of dan of a.

Model-based – the performance of this approach depends on the model being appropriate for the data.

As we know, this may not always be a good assumption.

3.2 Nonparametric approach

To deal with dependence in the data, we will employ a nonparametric *block* bootstrap.

Idea:

resample data in blocks to preserve the dependence structure within the blocks.

3.2.1 Nonoverlapping Blocks (NBB) Carlstin (1986).

Consider splitting $\mathbf{Y} = (Y_1, \ldots, Y_n)$ in b consecutive blocks of length ℓ .

We can then rewrite the data as $\boldsymbol{Y} = (\boldsymbol{B}_1, \dots, \boldsymbol{B}_b)$ with $\boldsymbol{B}_k = (Y_{(k-1)\ell+1}, \dots, Y_{k\ell}), k = 1, \dots, b.$

() Sample nonovelapping blocks B^{*}_{i},..., B^{*}_{b} independently from B_{1,-3}B₁₀ with replacement to form puendo data set Y^{*} = (B^{*}₁,..., B^{*}_b).

(a) estimate statistic of interest from
$$Y^*$$
 to get $\hat{\partial}^*$.
(3) Repeat D-Q R times to obtain $\hat{\partial}^{*(1)}_{,...,\hat{\partial}} \hat{\sigma}^{*(R)}$ to estimate day of $\hat{\partial}$.

Note, the order of data within the blocks must be maintained, but the order of the blocks that are resampled does not matter.

Künsch (1989) 3.2.2 Moving Blocks (MBB) Lin Esingh (1992).

Now consider splitting $\mathbf{Y} = (Y_1, \ldots, Y_n)$ into overlapping blocks of adjacent data points of length ℓ .

Now we have more blocks the choose firm! $(N = n - e + 1 \text{ us. } b = \lfloor \frac{n}{e} \rfloor)$.

We can then write the blocks as $B_k = (Y_k, \ldots, Y_{k+\ell-1}), k = 1, \ldots, n-\ell+1$.

$$\mu^{\mu}(\text{collect brocks} C - (D_{1,..,B_N}) \text{ sempling } B_{1,..,B_0}^* \text{ from } C, b = [\overline{z}], \text{ put together to get } Y^{m} = (B_{1,..,B_n}^*).$$

Alternative but
equivalent formulation let
$$I_{1,m-1} I_{b}$$
 by index of $P(T_{i}=j) = \frac{1}{N}$, $j = 1,..., N$ if $B_{i}^{x} = B_{T_{i}}^{x}$, $i = 1,..., b$.
 E_{X} : but $\hat{b}_{\mu} = \overline{Y}_{\mu}$, but MBB sample mean persion $\overline{Y}_{m}^{x} = \sum_{i=1}^{N} Y_{i}^{x} / m$, Find $E_{x}(\overline{y}_{m}^{x})$ and $Var_{x}(\overline{ym} \overline{Y}_{m}^{x})$ which estimate
 $N_{o}te: \overline{Y}_{m}^{x} = \frac{1}{b} \stackrel{b}{=} \frac{b}{\overline{y}_{i}} \stackrel{a}{=} \int_{a}^{b} (\overline{y}_{i}^{x}) = \int_{a}^{b} (H \ black B_{i}^{x}) = \sum_{i=1}^{n} (F_{i}^{x})^{x} / m$, Find $E_{x}(\overline{y}_{m}^{x})$ and $Var_{x}(\overline{ym} \overline{Y}_{m}^{x})$ which estimate
 $N_{o}te: \overline{Y}_{m}^{x} = \frac{1}{b} \stackrel{b}{=} \sum_{i=1}^{b} \overline{y}_{i} \stackrel{a}{=} \int_{a}^{b} (\overline{y}_{i}^{x}) = \frac{1}{a-a+i} \sum_{i=1}^{n-a+i} \sum_{i=1}^{a-a+i} \sum_{i=1}^{a-a-i} \sum_{i=1}^{a-a} \sum_{i=1}$

This directly estimates the virial of simple mean of legth & block Jey;

NOTE: The MBB recision of $\overline{V_n}(\overline{Y_n} - M) = \overline{V_n}(\overline{Y_n} - \overline{EY_n})$ is NOT $\overline{V_m}(\overline{Y_m} - \overline{Y_n})!$ is actually $\overline{V_m}(\overline{Y_m} - \overline{E_x}\overline{Y_m}) = \overline{V_m}(\overline{Y_m} - \widehat{M}) + \frac{\overline{V_n}}{\overline{V_n}}\overline{\overline{Y_n}}.$ Both NBB and MBB fix the resione issue from page 35. 3.2 Nonparametric approach 39Note in above (and prevbusly) $\hat{\theta}_n = T(F_n)$ is a function of the empirical dsn of X. Sometimes we real to bok at other statistics, which are functions of the empirical dsn of $X_i = (Y_{i,r-r}, Y_{i+p-1})_s = 1, ..., n-p+1$. Solution: regample blocks of X_i 's, not Y_i 's **3.2.3 Choosing Block Size** p-tuple.

If the block length is too short,

The resample cannot to capture the dependence (l=1 is ind bootstrap!).

If the block length is too long,

not many blocks to resample (l=n, mly have 1 block). does not minuic data generation. § Deads to high variance.

Asymptotic result: block length should increase of length of the time serves. If MDB & NBB produce consistent estimators of moments, etc.

For variance estimation, it is known the optimal block length:

$$b_{n}^{opt} = \begin{cases} [3B_{0}^{2}/26_{00}^{4}]^{V_{3}} n^{V_{3}} + o(n^{V_{3}}) & MBB \\ [B_{0}^{2}/6_{00}^{4}]^{V_{3}} n^{V_{3}} + o(n^{V_{3}}) & NBB. \end{cases}$$

where
$$B_0 = \sum_{k=-\infty}^{\infty} Kr(K)$$
 and $G_{00}^2 = \lim_{k \to \infty} Vor(T_n) = \sum_{k=-\infty}^{\infty} r(K)$.
 f
 $Cov(Y_{1,2}Y_{1+k})$.

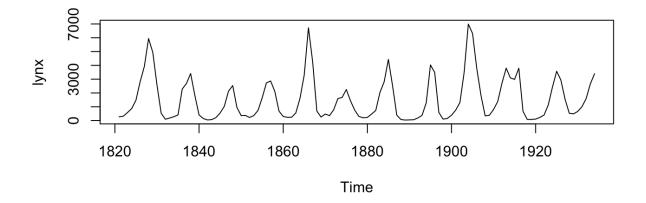
Outside of variance estimation, not much known about "optimal" block sizes.

for details

Your Turn

We will look at the annual numbers of lynx trappings for 1821–1934 in Canada. Taken from Brockwell & Davis (1991).

data(lynx)
plot(lynx)



Goal: Estimate the sample distribution of the mean

theta_hat <- mean(lynx)
theta_hat</pre>

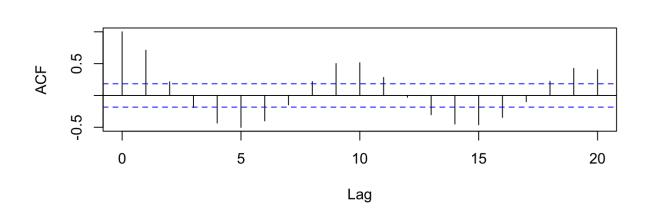
[1] 1538.018

3.2.4 Independent Bootstrap

```
library(simpleboot)
B <- 10000
### Your turn: perform the independent bootstap
## what is the bootstrap estimate se?</pre>
```

We must account for the dependence to obtain a correct estimate of the variance!

acf(lynx)



Series lynx

The acf (autocorrelation) in the dominant terms is positive, so we are *underestimating* the standard error.

3.2.5 Non-overlapping Block Bootstrap

```
# function to create non-overlapping blocks
nb <- function(x, b) {</pre>
  n \le length(x)
  l <- n %/% b
  blocks <- matrix(NA, nrow = b, ncol = 1)</pre>
  for(i in 1:b) {
    blocks[i, ] <- x[((i - 1)*l + 1):(i*l)]
  }
  blocks
}
# Your turn: perform the NBB with b = 10 and 1 = 11
theta_hat_star_nbb <- rep(NA, B)</pre>
nb blocks <- nb(lynx, 10)</pre>
for(i in 1:B) {
 # sample blocks
 # get theta_hat^*
}
# Plot your results to inspect the distribution
# What is the estimated standard error of theta hat? The Bias?
```

3.2.6 Moving Block Bootstrap

```
# function to create overlapping blocks
mb <- function(x, 1) {</pre>
 n <- length(x)
  blocks <- matrix(NA, nrow = n - 1 + 1, ncol = 1)
  for(i in 1:(n - 1 + 1)) {
    blocks[i, ] <- x[i:(i + 1 - 1)]
  }
 blocks
}
# Your turn: perform the MBB with 1 = 11
mb blocks <- mb(lynx, 11)</pre>
theta hat star mbb <- rep(NA, B)
for(i in 1:B) {
 # sample blocks
 # get theta_hat^*
}
# Plot your results to inspect the distribution
# What is the estimated standard error of theta hat? The Bias?
```

3.2.7 Choosing the Block size

Your turn: Perform the mbb for multiple block sizes l = 1:12
Create a plot of the se vs the block size. What do you notice?

4 Summary

Bootstrap methods are simulation methods for frequentist inference.

Bootstrap methods are useful for

Bootstrap methods can fail when