Density Estimation

Goal: We are interested in estimation of a density function f using observations of random
variables Y1, ...,Y, sampled independently from f.
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We will focus on nonparametric approaches to density estimation.

J

o SSume VPJ} ﬂft‘Hﬂ dLanf' ﬂﬁ 7@!‘#\ ,,.‘e JC

'prelamum%a wio ok infrmatin fo eshimcte § ot a Y-



‘ WM r
S el
1 Histograms o
T s
/

One familiar density estimator is a histogram. Histograms are produced automatically by
most software packages and are used so routinely to visualize densities that we rarely talk
about their underlying complexity.
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Recall the definition of a density function
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where F(:ﬁ) is the cdf of the random variable Y.

Now, let Y1, ...,Y, be a random sample of size n from the density f.
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A natural finite-sample analog of f(y) is to divide the support of Y into a set of K equi-

sized bins with small width h and replace F(z) with the empirical cdf.
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1.3 Measures of Performance

Squared Error

Mean Squared Error

Integrated Squared Error

Mean Integrated Squared Error
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1.4 Optimal Binwidth

1.4 Optimal Binwidth

We will investigate bias and variance of f pointwise, because

MSE(y) = (bias(f (y))? + Varf (y).
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The roughness of the underlying density, as measured by R(f’) determines the optimal
level of smoothing and the accuracy of the histogram estimate.

We cannot find the optimal binwidth without known the density f itself.

Simple (plug-in) approach: Assume f is a N(u,o?), then



1.4 Optimal Binwidth

Data driven approach:



2 Frequency Polygon

The histogram is simple, useful and piecewise constant.

library(ISLR)

# optimal h based on normal method
h 0 <- 3.491 * sd(HittersS$Salary, na.rm = TRUE) *
sum(!is.na(Hitters$Salary)) " (-1/3)

## original histogram with optimal h
ggplot (Hitters) +
geom histogram(aes(Salary), binwidth = h 0) -> p

## get values to build freq polygon
vals <- ggplot build(p)sdata[[1l]]
poly dat <- data.frame(x = c(vals$x[1l] - h_O0,
vals$x, valssx[nrow(vals)] + h 0),
y = ¢c(0, valsSy, 0))

## plot freq polygon
p + geom line(aes(x, y), data = poly dat, colour = "red")
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Let b1, ...,bxk+1 represent bin edges of bins with width h and ny,...,nx be the number of
observations falling into the bins. Let ¢y, . . ., ck+1 be the midpoints of the bin interval.

The frequency polygon is defined as

MISE

AMISE

(Graussian rule for binwidth
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In practice, a simple way to construct locally varying binwidth histograms is by
transforming the data to a different scale and then smoothing the transformed data. The
final estimate is formed by simply transforming the constructed bin edges {b;} back to the
original scale.
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