
Tree-based Methods
Tree-based methods partition the feature space into a set of rectangles and then �t a
simple model (like a constant) in each one.

Combining a large number of trees can often result in dramatic improvements in prediction
accuracy at the expense of interpretation.

Decision trees can be applied to both regression and classi�cation problems. We will start
with regression.
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1 Decision Trees
Let’s consider a regression problem with continuous response  and inputs  and ,
each taking values in the unit interval.

In each partition, we can model  with a different constant. However, there is a problem:

To simplify, we restrict attention to binary partitions.

The result is a partition into �ve regions . The corresponding regression model
predicts  with a constant  in region :
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1.1 Regression Trees

How should we grow a regression tree? Our data consists of  inputs for . We
need an automatic way to decide which variables to split on and where to split them.

Suppose we have a partition into  regions and we model the response as a constant in
each region.

Finding the best binary partition in terms of minimum sums of squares is generally
computationally infeasible.

p i = 1, … , n

M
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The process described above may produce good predictions on the training set, but is likely
to over�t the data.

A smaller tree, with less splits might lead to lower variance and better interpretation at
the cost of a little bias.

A strategy is to grow a very large tree  and then prune it back to obtain a subtree.T0
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1.2 Classi�cation Trees

If the target is a classi�cation outcome taking values , the only changes needed
in the tree algorithm are the criteria for splitting, pruning, and .

:

Node impurity (Splitting):

Pruning:
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2 Bagging
Decision trees suffer from high variance.

Bootstrap aggregation or bagging is a general-purpose procedure for reducing the
variance of a statistical learning method, particularly useful for trees.

So a natural way to reduce the variance is to take many training sets from the population,
build a separate prediction model using each training set, and average the resulting
predictions.

Of course, this is not practical because we generally do not have access to multiple training
sets.
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While bagging can improve predictions for many regression methods, it’s particularly
useful for decision trees.

These trees are grown deep and not pruned.

How can bagging be extended to a classi�cation problem?

2.1 Out-of-Bag Error

There is a very straightforward way to estimate the test error of a bagged model.
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2.2 Interpretation
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3 Random Forests
Random forests provide an improvement over bagged trees by a small tweak that
decorrelates the trees.

As with bagged trees, we build a number of decision trees on bootstrapped training
samples.

In other words, in building a random forest, at each split in the tree, the algorithm is not
allowed to consider a majority of the predictors.

The main difference between bagging and random forests is the choice of predictor subset
size .m
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4 Boosting
The basic idea of boosting is to take a simple (and poorly performing form of) predictor
and by sequentially modifying/perturbing it and re-weighting (or modifying) the training
data set, to creep toward an effective predictor.

Consider a 2-class -  loss classi�cation problem. We’ll suppose that output  takes values
in . The AdaBoost.M1 algorithm is built on some base classi�er form.

1. Initialize the weights on the training data.

2. Fit a -valued predictor/classi�er  to the training data to optimize the -  loss.

3. Set new weights on the training data.

4. For ,

5. Output an updated classi�er based on “weighted voting”.

0 1 y

G = {−1, 1}

G f̂ 1 0 1

m = 2, … , M
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4.1 Why might this work?

For  an arbitrary function of , consider a classi�er built using  as a voting function,
e.g.  , ignoring the possibility that . Then

Using the following fact,

provided , the -  loss error rate for  is

In other words, the error rate is bounded above by expected exponential loss. AdaBoost
works by providing a voting function that produces a small value of this bound.

To see this, we need to identify for each  a value  that optimizes ,
where

An optimal  is easily seen to be half the log odds ratio, i.e. the  optimizing the upper
bound is

Now consider “base classi�ers”  taking values in  with parameters 
and functions built from them of the form

for training-data-dependent  and .

Then, . Thus, successive ’s are perturbations of the
previous ones.

g x g

f(x) = sign(g(x)) g(x) = 0

I(y ≠ ŷ) = I(yg(x) < 0).

I(u < 0) ≤ exp(−u) ∀u,

P(g(X) = 0) = 0 0 1 f(x)

E[I(Y ≠ Ŷ )] = E[I(Y g(X) < 0)] ≤ E[exp(−Y g(X)].

u a E [exp(−aY )|X = u]

E [exp(−aY )|X = u] = exp(−a)P [Y = 1|X = u] + exp(a)P [Y = −1|X = u] .

a g

g (u) = ln( ).
1

2

P [yY = 1|X = u]

P [Y = −1|X = u]

hℓ (x, γℓ) G = {−1, 1} γl

gm (x) =

m

∑
l=1

βℓhℓ (x, γℓ) .

βl γl

gm (x) = gm−1 (x) + βmhm (x, γm) g
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How can we de�ne the perturbations to produce small values of the upper bound of our
error ( )?

Well, we don’t have a complete probability model for  (if we did, we would be done).
So, let’s optmize an empirical version of this bound.

and let’s call .

We will consider optimal choice of  and  for purposes of making  the best
possible perturbation of  in terms of minimizing .

1. Choice of :

Independentof  we need  to minimize the -weighted error rate of .
Call the optimized version . This is the same as step 4a. in AdaBoost.m1.

2. Choice of :

E[exp(−Y g(X)]

(X, Y )

Em =
n

∑
i=1

exp(−yigm (xi))

=
n

∑
i=1

exp(−yigm−1 (xi) − yiβmhm (xi, γm))

=
n

∑
i=1

exp(−yigm−1 (xi)) exp(−yiβmhm (x, γm)),

(Now based on tr

vim = exp(−yigm−1 (xi))

γm βm > 0 gm

gm−1 Em

γm

Em = ∑
i with

hm(xi,γm)=yi

vim exp(−βm) + ∑
i with

hm(xi,γm)≠yi

vim exp(βm)

= (exp(βm) − exp(−βm))
n

∑
i=1

vimI [hm (xi, γm) ≠ yi] + exp(−βm)
n

∑
i=1

vim

βm γm vim hm(x, γm)

hm(x)

βm

Em = exp(−βm)
⎛
⎜⎜
⎝

∑
i with

hm(xi,γm)=yi

vim + ∑
i with

hm(xi,γm)≠yi

vim exp(2βm)
⎞
⎟⎟
⎠

= exp(−βm)(
n

∑
i=1

vim +

n

∑
i=1

vim (exp(2βm) − 1) I [hm (xi) ≠ yi])
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and minimization of  is equivalent to minimization of

Let

then a bit of calculus shows that the optimizing  is

Notice this coef�cient is **exactly  from step 4b. and 4c. in AdaBoost.m1 (and
the  is irrelevant for the sign).

3. Updating weights :

Note that

Since  is constant across , it is irrelevant to weighting, and since the
prescription for  produces half what AdaBoost prescribes in 4b. for , the
weights used in the choice of  and  are exactly as in AdaBoost.
Since  corresponds to the �rst AdaBoost step,  is  of the AdaBoost voting
function and the ’s generate the same classi�er as the AdaBoost algorithm.

So, in conclusion, we have found  (a positive multiple of the AdaBoost voting function)
which optimizes an empirical version of , the upper bound on our error
rate!

Em

exp(−βm)(1 + (exp(2βm) − 1) ) .
∑

N

i=1 vimI [hm (xi) ≠ yi]

∑N

i=1
vim

¯̄¯̄¯̄¯err
hm

m = ,
∑n

i=1
vimI [hm (xi) ≠ yi]

∑
n

i=1 vim

βm

βm = ln( ).
1

2

1 − ¯̄¯̄¯̄¯err
hm

m

¯̄¯̄¯̄¯errhm

m

αm

2
1
2

vim

vi(m+1) = exp(−yigm (xi))

= exp(−yi (gm−1 (xi) + βmhm (xi)))

= vim exp(−yiβmhm (xi))

= vim exp(βm (2I [hm (xi) ≠ yi] − 1))

= vim exp(2βmI [hm (xi) ≠ yi]) exp(−βm).

exp(−βm) i

βm αm

βm+1 hm+1 (x, γm+1)
g1 gM 1/2

gm

gM

E exp(−Y g(X))


