
Tree-based Methods
Tree-based methods partition the feature space into a set of rectangles and then �t a
simple model (like a constant) in each one.

Combining a large number of trees can often result in dramatic improvements in prediction
accuracy at the expense of interpretation.

Decision trees can be applied to both regression and classi�cation problems. We will start
with regression.

2

1 Decision Trees
Let’s consider a regression problem with continuous response and inputs and ,
each taking values in the unit interval.

In each partition, we can model with a different constant. However, there is a problem:

To simplify, we restrict attention to binary partitions.

The result is a partition into �ve regions . The corresponding regression model
predicts with a constant in region :

Y X1 X2

Y

R1, … , R5

Y cm Rm

1.1 Regression Trees 3

1.1 Regression Trees

How should we grow a regression tree? Our data consists of inputs for . We
need an automatic way to decide which variables to split on and where to split them.

Suppose we have a partition into regions and we model the response as a constant in
each region.

Finding the best binary partition in terms of minimum sums of squares is generally
computationally infeasible.

p i = 1, … , n

M

4 1 Decision Trees

The process described above may produce good predictions on the training set, but is likely
to over�t the data.

A smaller tree, with less splits might lead to lower variance and better interpretation at
the cost of a little bias.

A strategy is to grow a very large tree and then prune it back to obtain a subtree.T0

1.2 Classi�cation Trees 5

1.2 Classi�cation Trees

If the target is a classi�cation outcome taking values , the only changes needed
in the tree algorithm are the criteria for splitting, pruning, and .

:

Node impurity (Splitting):

Pruning:

1, 2, … , K

cm

cm

6

2 Bagging
Decision trees suffer from high variance.

Bootstrap aggregation or bagging is a general-purpose procedure for reducing the
variance of a statistical learning method, particularly useful for trees.

So a natural way to reduce the variance is to take many training sets from the population,
build a separate prediction model using each training set, and average the resulting
predictions.

Of course, this is not practical because we generally do not have access to multiple training
sets.

2.1 Out-of-Bag Error 7

While bagging can improve predictions for many regression methods, it’s particularly
useful for decision trees.

These trees are grown deep and not pruned.

How can bagging be extended to a classi�cation problem?

2.1 Out-of-Bag Error

There is a very straightforward way to estimate the test error of a bagged model.

8 2 Bagging

2.2 Interpretation

9

3 Random Forests
Random forests provide an improvement over bagged trees by a small tweak that
decorrelates the trees.

As with bagged trees, we build a number of decision trees on bootstrapped training
samples.

In other words, in building a random forest, at each split in the tree, the algorithm is not
allowed to consider a majority of the predictors.

The main difference between bagging and random forests is the choice of predictor subset
size .m

10

4 Boosting
The basic idea of boosting is to take a simple (and poorly performing form of) predictor
and by sequentially modifying/perturbing it and re-weighting (or modifying) the training
data set, to creep toward an effective predictor.

Consider a 2-class - loss classi�cation problem. We’ll suppose that output takes values
in . The AdaBoost.M1 algorithm is built on some base classi�er form.

1. Initialize the weights on the training data.

2. Fit a -valued predictor/classi�er to the training data to optimize the - loss.

3. Set new weights on the training data.

4. For ,

5. Output an updated classi�er based on “weighted voting”.

0 1 y

G = {−1, 1}

G f̂ 1 0 1

m = 2, … , M

4.1 Why might this work? 11

4.1 Why might this work?

For an arbitrary function of , consider a classi�er built using as a voting function,
e.g. , ignoring the possibility that . Then

Using the following fact,

provided , the - loss error rate for is

In other words, the error rate is bounded above by expected exponential loss. AdaBoost
works by providing a voting function that produces a small value of this bound.

To see this, we need to identify for each a value that optimizes ,
where

An optimal is easily seen to be half the log odds ratio, i.e. the optimizing the upper
bound is

Now consider “base classi�ers” taking values in with parameters
and functions built from them of the form

for training-data-dependent and .

Then, . Thus, successive ’s are perturbations of the
previous ones.

g x g

f(x) = sign(g(x)) g(x) = 0

I(y ≠ ŷ) = I(yg(x) < 0).

I(u < 0) ≤ exp(−u) ∀u,

P(g(X) = 0) = 0 0 1 f(x)

E[I(Y ≠ Ŷ)] = E[I(Y g(X) < 0)] ≤ E[exp(−Y g(X)].

u a E [exp(−aY)|X = u]

E [exp(−aY)|X = u] = exp(−a)P [Y = 1|X = u] + exp(a)P [Y = −1|X = u] .

a g

g (u) = ln().
1

2

P [yY = 1|X = u]

P [Y = −1|X = u]

hℓ (x, γℓ) G = {−1, 1} γl

gm (x) =

m

∑
l=1

βℓhℓ (x, γℓ) .

βl γl

gm (x) = gm−1 (x) + βmhm (x, γm) g

12 4 Boosting

How can we de�ne the perturbations to produce small values of the upper bound of our
error ()?

Well, we don’t have a complete probability model for (if we did, we would be done).
So, let’s optmize an empirical version of this bound.

and let’s call .

We will consider optimal choice of and for purposes of making the best
possible perturbation of in terms of minimizing .

1. Choice of :

Independentof we need to minimize the -weighted error rate of .
Call the optimized version . This is the same as step 4a. in AdaBoost.m1.

2. Choice of :

E[exp(−Y g(X)]

(X, Y)

Em =
n

∑
i=1

exp(−yigm (xi))

=
n

∑
i=1

exp(−yigm−1 (xi) − yiβmhm (xi, γm))

=
n

∑
i=1

exp(−yigm−1 (xi)) exp(−yiβmhm (x, γm)),

(Now based on tr

vim = exp(−yigm−1 (xi))

γm βm > 0 gm

gm−1 Em

γm

Em = ∑
i with

hm(xi,γm)=yi

vim exp(−βm) + ∑
i with

hm(xi,γm)≠yi

vim exp(βm)

= (exp(βm) − exp(−βm))
n

∑
i=1

vimI [hm (xi, γm) ≠ yi] + exp(−βm)
n

∑
i=1

vim

βm γm vim hm(x, γm)

hm(x)

βm

Em = exp(−βm)
⎛
⎜⎜
⎝

∑
i with

hm(xi,γm)=yi

vim + ∑
i with

hm(xi,γm)≠yi

vim exp(2βm)
⎞
⎟⎟
⎠

= exp(−βm)(
n

∑
i=1

vim +

n

∑
i=1

vim (exp(2βm) − 1) I [hm (xi) ≠ yi])

4.1 Why might this work? 13

and minimization of is equivalent to minimization of

Let

then a bit of calculus shows that the optimizing is

Notice this coef�cient is **exactly from step 4b. and 4c. in AdaBoost.m1 (and
the is irrelevant for the sign).

3. Updating weights :

Note that

Since is constant across , it is irrelevant to weighting, and since the
prescription for produces half what AdaBoost prescribes in 4b. for , the
weights used in the choice of and are exactly as in AdaBoost.
Since corresponds to the �rst AdaBoost step, is of the AdaBoost voting
function and the ’s generate the same classi�er as the AdaBoost algorithm.

So, in conclusion, we have found (a positive multiple of the AdaBoost voting function)
which optimizes an empirical version of , the upper bound on our error
rate!

Em

exp(−βm)(1 + (exp(2βm) − 1)) .
∑

N

i=1 vimI [hm (xi) ≠ yi]

∑N

i=1
vim

¯̄¯̄¯̄¯err
hm

m = ,
∑n

i=1
vimI [hm (xi) ≠ yi]

∑
n

i=1 vim

βm

βm = ln().
1

2

1 − ¯̄¯̄¯̄¯err
hm

m

¯̄¯̄¯̄¯errhm

m

αm

2
1
2

vim

vi(m+1) = exp(−yigm (xi))

= exp(−yi (gm−1 (xi) + βmhm (xi)))

= vim exp(−yiβmhm (xi))

= vim exp(βm (2I [hm (xi) ≠ yi] − 1))

= vim exp(2βmI [hm (xi) ≠ yi]) exp(−βm).

exp(−βm) i

βm αm

βm+1 hm+1 (x, γm+1)
g1 gM 1/2

gm

gM

E exp(−Y g(X))

