7.8.2 Asymptotic Normality of M-Estimators

Next we give an asymptotic normality theorem that is the direct generalization of Theorem 6.7 (p. 286).

Theorem 7.2. Let Y_1, \ldots, Y_n be iid with distribution function F(y). Assume that

- 1. $\psi(y, \theta)$ and its first two partial derivatives with respect to θ exist for all y in the support of F and for all θ in a neighborhood of θ_0 , where $G_F(\theta_0) = 0$.
- 2. For each θ in a neighborhood of θ_0 , there exists a function g(y) (possibly depending on θ_0) such that for all j, k and $l \in \{1, ..., b\}$,

$$\left| \frac{\partial^2}{\partial \theta_j \, \partial \theta_k} \psi_l(y, \boldsymbol{\theta}) \right| \leq g(y)$$

for all y and where $\int g(y) dF(y) < \infty$.

- 3. $A(\theta_0) = E\{-\psi'(Y_1, \theta_0)\}$ exists and is nonsingular.
- 4. $B(\theta_0) = E\left\{\psi(Y_1, \theta_0)\psi(Y_1, \theta_0)^T\right\}$ exists and is finite.

If
$$G_n(\widehat{\theta}) = o_p(n^{-1/2})$$
 and $\widehat{\theta} \stackrel{p}{\longrightarrow} \theta_0$, then

$$\sqrt{n}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) \xrightarrow{d} N\left[\boldsymbol{0}, A(\boldsymbol{\theta}_0)^{-1}\boldsymbol{B}(\boldsymbol{\theta}_0) \left\{A(\boldsymbol{\theta}_0)^{-1}\right\}^T\right] \quad \text{as } n \to \infty.$$

Proof. The proof uses a component-wise expansion of $G_n(\widehat{\theta})$ similar to that in (6.21, p. 289) used in the proof of Theorem 6.10 (p. 288). By assumption $G_n(\widehat{\theta}) = \sigma_p(n^{-1/2})$ and thus a Taylor series expansion of the *j*th component of $G_n(\widehat{\theta})$ results in

$$o_p(n^{-1/2}) = \boldsymbol{G}_{n,j}(\widehat{\boldsymbol{\theta}})$$

$$= \boldsymbol{G}_{n,j}(\boldsymbol{\theta}_0) + \boldsymbol{G}'_{n,j}(\boldsymbol{\theta}_0)(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) + \frac{1}{2}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0)^T \boldsymbol{G}''_{n,j}(\widetilde{\boldsymbol{\theta}}_j^*)(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0)$$

$$= \boldsymbol{G}_{n,j}(\boldsymbol{\theta}_0) + \left\{ \boldsymbol{G}'_{n,j}(\boldsymbol{\theta}_0) + \frac{1}{2}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0)^T \boldsymbol{G}''_{n,j}(\widetilde{\boldsymbol{\theta}}_j^*) \right\} (\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0),$$

where $\widetilde{\boldsymbol{\theta}}_{j}^{*}$ is on the line segment joining $\widehat{\boldsymbol{\theta}}$ and $\boldsymbol{\theta}_{0}$, $j=1,\ldots,b$. Writing these b equations in matrix notation we have

$$o_p(n^{-1/2}) = G_n(\theta_0) + \left\{ G'_n(\theta_0) + \frac{1}{2} \widetilde{Q}^* \right\} (\widehat{\theta} - \theta_0),$$

where \widetilde{Q}^* is the $b \times b$ matrix with jth row given by $(\widehat{\theta} - \theta_0)^T G_{n,j}''(\widetilde{\theta}_j^*)$. Note that under Condition 2, each entry in \widetilde{Q}^* is bounded by $||\widehat{\theta} - \theta_0||n^{-1} \sum_{i} g(Y_i) = o_p(1)$,

and thus $\widetilde{Q}^* = o_p(1)$. By the WLLN $G'_n(\theta_0) \xrightarrow{p} -A(\theta_0)$ which is nonsingular under Condition 3. Thus for n sufficiently large, the matrix in brackets above is nonsingular with probability approaching 1. On the set where the matrix in brackets is nonsingular (call that set S_N) we have

$$\cdot \sqrt{n}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) = -\left\{ \boldsymbol{G}_n'(\boldsymbol{\theta}_0) + \frac{1}{2}\widetilde{\boldsymbol{Q}}^* \right\}^{-1} \left\{ \sqrt{n} \boldsymbol{G}_n(\boldsymbol{\theta}_0) + \boldsymbol{o}_p(1) \right\}.$$

Slutsky's Theorem and the CLT then give the result when we note that $P(S_N) \to 1$. As in Problem 6.6 (p. 293), we could also add and subtract terms to give an approximation-by-averages representation, where $h_F(Y_i, \theta_0) = A(\theta_0)^{-1} \psi(Y_i, \theta_0)$.

7.8.3 Weak Law of Large Numbers for Averages with Estimated Parameters

One of the most useful aspects of the M-estimator approach is the availability of the empirical sandwich estimator (7.12, p. 302). Thus, it is important that the pieces of this estimator, $A_n(Y, \widehat{\theta})$ and $B_n(Y, \widehat{\theta})$, converge in probability to $A(\theta_0)$ and $B(\theta_0)$, respectively. But note that this convergence would follow immediately from the WLLN except for the presence of $\widehat{\theta}$. Thus, the next two theorems give conditions for the WLLN to hold for averages whose summands are a function of $\widehat{\theta}$ (and thus dependent). The first theorem assumes differentiability and a bounding function similar to Theorem 5.28 (p. 249). The second uses monotonicity.

Theorem 7.3. Suppose that Y_1, \ldots, Y_n are iid with distribution function F and assume that the real-valued function $q(Y_i, \theta)$ is differentiable with respect to θ , $E_F|q'(Y_1, \theta_0)| < \infty$, and there exists a function M(y) such that for all θ in a neighborhood of θ_0 and all $j \in \{1, \ldots, b\}$,

$$\left|\frac{\partial}{\partial \theta_j}q(y,\boldsymbol{\theta})\right| \leq M(y),$$

where $E_{\rm F}\{M(Y_1)\} < \infty$. If $\widehat{\theta} \xrightarrow{p} \theta_0$, then $n^{-1} \sum_{i=1}^n q(Y_i, \widehat{\theta}) \xrightarrow{p} E_{\rm F}q(Y_1, \theta_0)$ as $n \to \infty$.

Proof.

$$\left| \frac{1}{n} \sum_{i=1}^{n} q(Y_i, \widehat{\boldsymbol{\theta}}) - \operatorname{E}_{F} q(Y_1, \boldsymbol{\theta}_0) \right| \leq \left| \frac{1}{n} \sum_{i=1}^{n} q(Y_i, \widehat{\boldsymbol{\theta}}) - \frac{1}{n} \sum_{i=1}^{n} q(Y_i, \boldsymbol{\theta}_0) \right| + \left| \frac{1}{n} \sum_{i=1}^{n} q(Y_i, \boldsymbol{\theta}_0) - \operatorname{E}_{F} q(Y_1, \boldsymbol{\theta}_0) \right|$$