1.5.2 Observed Information

The information matrix is not random, but it is also not observable from the data.

You rud knowledge of the distribution to calculate it.
(would be great to use
$$I(\hat{\Theta}_{mLE}) = E \left\{ -\frac{\partial^2}{\partial \theta} \log f(Y_i; j \in I) \right\}_{\theta = \hat{\Theta}_{mLE}}$$

Let Y_1, \ldots, Y_n be iid with density $f_Y(y_i; \boldsymbol{\theta})$. The log likelihood is defined as

$$\log L(\underline{\theta}|\underline{Y}) = \sum_{i=1}^{2} \log f_{y}(\underline{Y}_{i};\underline{\theta})$$

taking two derivatives and dividing by n results in

define:
$$\overline{I}(\underline{Y}, \underline{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \left\{ -\frac{2^2}{2\theta} \log f(\underline{Y}_i S \underline{\theta}) \right\}$$

 $\left\{ average curvature usut ribution. \right\}$

 $if \ I(\theta) = E\{-\frac{\partial^2}{\partial \theta} \partial \theta^T \log f(Y; s\theta)\} \ Hen \ \overline{I}(Y, \theta) \ would be an obvious estimator * if we know <math>\theta^* !$ $\Rightarrow \overline{I}(Y, \hat{\theta}_{MLE}) \ seems \ like a natural estimator for I(\theta).$

Definition: The matrix $n\bar{I}(Y; \hat{\theta}_{MLE})$ is called the sample information matrix, or the observed information matrix.

Note: $\overline{D}(\underline{\theta})$ is the expected curvature of the log-likelihood surface from <u>ore</u> observation The observed intermation motion $n\overline{D}(\underline{y}, \underline{\theta}_{mLE})$ is from a sample of size n and <u>does</u> depend on sample size. Recall $\underline{\theta}_{mLE} \sim N(\underline{\theta}, \{n\overline{D}(\underline{\theta})\}^{-1})$. To get an appropriate variance of $\underline{\theta}_{mLE}$ for a sample of size n, we need that matrix the legend on n.

Why use $I(\boldsymbol{\theta}) = \mathbb{E}\left[-\frac{\partial^2}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\top}} \log f(Y_1; \boldsymbol{\theta})\right]$ as the basis for an estimator, rather than $I(\boldsymbol{\theta}) = \mathbb{E}\left[\left\{\frac{\partial}{\partial \boldsymbol{\theta}^{\top}} \log f(Y_1; \boldsymbol{\theta})\right\} \left\{\frac{\partial}{\partial \boldsymbol{\theta}} \log f(Y_1; \boldsymbol{\theta})\right\}\right]$?

The hessian (curvature) Θ $\hat{\Theta}_{mle}$ is readily available from optimization methods \Rightarrow $hT(\chi, \hat{\Theta}_{mle})$ can be computed easily.

Alternaturely could use $\overline{I}^*(\chi, \underline{e}) = \frac{1}{n} \sum_{i=1}^n \left\{ \frac{\partial}{\partial \underline{e}^T} \log f(Y_i; \underline{e}) \right\} \left\{ \frac{\partial}{\partial \underline{e}} \log f(X_i; \underline{e}) \right\}$ because $E\left[\overline{I}^*(\chi, \underline{e})\right] = I\left(\underline{e}\right)$ obso.

We'll see this again in missperified models (and how to "concert" tem) - robustness vs. efficiency. eg. Estimating Equations Now let's prove the asymptotic normality of the MLE (in the scalar case).

$$\begin{aligned} \text{Mstrill facts: For } & X_{1,2,3,n} \text{ ind with } \text{Max} = e^{h_{1} e^{h_{2}} e^{h_{2}} e^{h_{3}}} \\ \text{ULLN: } & \overline{\chi}_{n} = \frac{1}{h} \frac{1}{2h} \sum_{i=1}^{n} e^{-h_{2}} e^{h_{2}} E[\chi_{i}] \\ \text{CLT: } & \text{In} (\overline{\chi}_{n} - E\chi_{i}) \rightarrow d N[0, e^{2}]. \end{aligned}$$

$$\begin{aligned} \text{Mstrill facts: } & f_{n} (\overline{\chi}_{n} - E\chi_{i}) \rightarrow d N[0, e^{2}]. \end{aligned}$$

$$\begin{aligned} \text{Mstrill facts: } & f_{n} (\overline{\chi}_{n} - E\chi_{i}) \rightarrow d N[0, e^{2}]. \end{aligned}$$

$$\begin{aligned} \text{Mstrill facts: } & f_{n} (\overline{\chi}_{n} - E\chi_{i}) \rightarrow d N[0, e^{2}]. \end{aligned}$$

$$\begin{aligned} \text{Mstrill facts: } & f_{n} (\overline{\chi}_{n} - E\chi_{i}) \rightarrow d N[0, e^{2}]. \end{aligned}$$

$$\begin{aligned} \text{Mstrill facts: } & f_{n} (\overline{\chi}_{n} - E\chi_{i}) \rightarrow d N[0, e^{2}]. \end{aligned}$$

$$\begin{aligned} \text{Mstrill facts: } & f_{n} (\overline{\chi}_{n} - E\chi_{i}) \rightarrow d N[0, e^{2}]. \end{aligned}$$

$$\begin{aligned} \text{Mstrill facts: } & f_{n} (\overline{\chi}_{n} - E\chi_{i}) \rightarrow d N[0, e^{2}]. \end{aligned}$$

$$\begin{aligned} \text{Mstrill facts: } & f_{n} (\overline{\chi}_{n} - E\chi_{i}) \rightarrow d N[0, 1] = 1.60 \quad \text{and } & \sum (f_{1,0} - g)_{1,2}^{n} \quad \text{are } id r.u.t. \end{aligned}$$

$$\begin{aligned} \text{Mstrill facts: } & f_{n} (\frac{1}{n} S(\theta) - 0) \rightarrow d N[0, 1](\theta)] = 1.60 \quad \text{and } & \sum (f_{1,0} - g)_{1,2}^{n} \quad \text{are } id r.u.t. \end{aligned}$$

$$\begin{aligned} \text{Mstrill facts: } & f_{n} (\frac{1}{n} S(\theta) - 0) \rightarrow d N[0, 1](\theta)] = 1.60 \quad \text{and } & \sum (f_{1,0} - g)_{1,2}^{n} \quad \text{are } id r.u.t. \end{aligned}$$

$$\begin{aligned} \text{Mstrill facts: } & f_{n} (\frac{1}{n} S(\theta) - 0) \rightarrow d N[0, 1](\theta)] = 1.60 \quad \text{and } & \sum (f_{1,0} - g)_{1,2}^{n} \quad \text{are } id r.u.t. \end{aligned}$$

$$\begin{aligned} \text{Mstrill facts: } & f_{n} (f_{n} - G(\theta) - g) = \frac{1}{2\pi} \frac{d^{2}(\eta_{1} f_{n}(\chi_{1}))}{dt^{2}} = -\frac{2}{\pi} \frac{d}{ds} S(\eta_{1,0}) + E\left[-\frac{d}{ds} S(\eta_{1,0})\right] = 1.60. \end{aligned}$$

$$\begin{aligned} \text{Mstrill facts: } & f_{n} (f_{n} - G(\theta) - g) = \frac{1}{2\pi} \frac{d^{2}(\eta_{1} f_{n}(\chi_{1})}{dt^{2}} = -\frac{2}{\pi} \frac{d}{ds} S(\eta_{1,0}) + E\left[-\frac{d}{ds} S(\eta_{1,0})\right] = 1.60. \end{aligned}$$

$$\begin{aligned} \text{Mstrill facts: } & f_{n} (f_{n} - G(\theta) - g + 1.60. \end{bmatrix}$$

$$\begin{aligned} \text{Mstrill facts: } & f_{n} (f_{n} - G(\theta) - g + 1.60. \end{bmatrix}$$

$$\begin{aligned} \text{Mstrill facts: } & f_{n} (f_{n} - G(\theta) - g + 1.60. \end{aligned}$$

$$\begin{aligned} \text{Mstrill facts: } & f_{n} (f_{n} - G(\theta) - g + 1.60. \end{aligned}$$

$$\begin{aligned} \text{Mstrill facts: } & f_{n} (f_{n} - G(\theta) - g + 1.60. \end{aligned}$$

$$\begin{aligned} \text{Mstrill facts: } & f_{n} (f_{n} - G(\theta) - g + 1.60. \end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned} \text{Mstrill facts: } & f_{n} (f_{n} - G(\theta) - g + 1.60. \end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned} \text{Mstrill facts: } & f_$$

Note: the argument to replace I(0) by $\widetilde{I}(\widehat{\theta}_{m,E})$ in the asymptotic result is justified by convergence is probability. This argument is generalized to $\underline{\theta}$ by interpreting the score as a birl restor, $I(\underline{\theta})$ as birb module, $Z \sim N_b(\underline{0}, I_b)$ don