
Methods of Maximizing the Likelihood
Maximum likelihood estimation requires maximization of the log likelihood

.ℓ(θ) = logL(θ|Y)

In most cases
,
this means taking derivatives and solving likelihood equations

11) = (E) = 0.

Sometimes we can do this analytically (yay !)

When an analytical solution doesn't exist
,

we have options :

-> standard optimization methods like Newton-Raphson

cor fancy ones like gradient descent)

=> EM algorithm .

1

1 EM Algorithm
Approach solving the likelihood equation via viewing the observed data as incomplete
and that there is missing data that would make the problem simpler if we had it.

Example (Two-Component Mixture): Suppose are iid from the mixture density

where and are bivariate normal densities with mean vectors and and variance
matrices and , respectively. Thus, the parameter vector and
the likelihood is

Y

Z

Y1,… ,Yn

f(y;θ) = pf1(y;μ1, Σ1) + (1 − p)f2(y;μ2, Σ2),

f1 f2 μ1 μ2

Σ1 Σ2 θ = (p,μ1,μ2, Σ1, Σ2)

L(p,μ1,μ2, Σ1, Σ2) =

Expectation nization
Maxi

↓

-

-

d
sometimes it is actually missing data

,
other times just

additional data we wish we had

Intuitionfor

what
date ad

It

-proced
lo

show

[pf , (7ijm ,

(
,) + (-p)tz(7ijM2

,
S2)]

=> l(p, ,, 1 2
,
5, , (2) = log(pf ,

(tim
,
f

,) + (-p)fy(zij12 , 52)]
.. and we're stuck.

We cannot get near expressions for Mk
,
not or

ULE
K = 1

,
2.

Actually ,
this log-likehood has maxima or boundaryof the space

=> not well-behaved

2

Let’s try to maximize the likelihood

library(mvtnorm) ## multivariate normal

p = .6
mu1 <- c(0, 0)
sig1 <- matrix(c(1, 0, 0, 1), ncol = 2)
mu2 <- c(1.5, 1.5)
sig2 <- matrix(c(1, .6, .6, 1), ncol = 2)

sample from the mixture
n <- 50
z <- rbinom(n, 1, p)

y1 <- rmvnorm(sum(z), mean = mu1, sigma = sig1)
y2 <- rmvnorm(n - sum(z), mean = mu2, sigma = sig2)
y <- matrix(NA, nrow = n, ncol = 2) ## observed data
y[z == 1,] <- y1
y[z == 0,] <- y2

df <- data.frame(y, z)

plot data
ggplot(df) +
 geom_point(aes(X1, X2)) +
 ggtitle("Observed (Incomplete) Data")

ggplot(df) +
 geom_point(aes(X1, X2, colour = as.character(z))) +
 ggtitle("Complete Data")

3

3 1 EM Algorithm

Parameter Truth MLE1 MLE2
0.6 0.6771 0.6634
0.0 0.0307 0.0050
0.0 -0.0512 -0.0281
1.0 0.9757 0.9757
0.0 0.2178 0.2267
1.5 1.5597 1.5744
1.5 1.4815 1.4859
1.0 0.7161 0.7220
0.6 0.2679 0.2436

loglikelihood of incomplete data--no knowledge of z
loglik_mixture <- function(par, data) {
 p <- plogis(par[1]) # p guaranteed to be in [0,1]
 mu1 <- c(par[2], par[3])
 sig1 <- matrix(c(exp(par[4]), par[5], par[5],

exp(par[4])), nrow = 2)
 mu2 <- c(par[6], par[7])
 sig2 <- matrix(c(exp(par[8]), par[9], par[9],

exp(par[8])), nrow = 2)
 # note: exponential guarantees the diagonal elements

are positive, but
 # nothing to guarantee matrices are positive definite.

(Could do square root)

 out <- log(p * dmvnorm(data, mean = mu1, sigma = sig1) +
 (1-p) * dmvnorm(data, mean = mu2, sigma =

sig2))
 return(sum(out))
}

optimize from different starting values
mle1 <- optim(c(0, -.2, -.2, .5, 0, 2, 2, .5, 0),

loglik_mixture, data = y, control = list(fnscale = -1))
mle2 <- optim(c(.405, 0, 0, 0, 0, 1.5, 1.5, 0, .6),

loglik_mixture, data = y, control = list(fnscale = -1))

p

μ11

μ12

Σ111

Σ112

μ21

μ22

Σ211

Σ212

/tutdusterid

4

Fitted results:

This seems pretty good… can we break this with initialization?

[1] -137.7964

Parameter Truth MLE3
0.6 0.9873
0.0 0.0000
0.0 0.0000
1.0 1.0000
0.0 0.0000
1.5 1.8067
1.5 3.3712
1.0 0.0000

Centered the second mixture component at a data point, and
shrink

variance, so normal is super-concentrated around that
point.

loglik_mixture(c(.6, 0, 0, 0, 0, y[30, 1], y[30, 2], -50,
0), data = y)

mle3 <- optim(c(.6, 0, 0, 0, 0, y[30, 1], y[30, 2], -50, 0),
loglik_mixture, data = y, control = list(fnscale = -1))

p

μ11

μ12

Σ111

Σ112

μ21

μ22

Σ211

- Yikes!

maker
no

serve

5 1 EM Algorithm

Parameter Truth MLE3
0.6 0.0000

What would change if we were given the complete data, where ?

Σ212

Zi
iid
∼ Bern(p)

-make an

#Howwe know clusterassignments !

=> Feliz ; E = (pt
,
(y

,e
5

,7) (21-p)tzlesAndal)"
-E)

.

=> l(p , MiM, [52/],)= zilogf(ijM ,
[r) + (l-zi) logfz (7i;M2 ,[2) +

zilogp +
S

(-zi)log(-p))

z)=Zayf, (i Mi 5,

OM OMI

log Fr (7i, M ,,

<
,) = - log hiT - Leydt (5 .)

- (1 :
-Mit 1: - M,

=>
Olayfi (ijurE) =-(i -Mr)-

O

plugging
in above:

= =Sz(Ti-u)
&M ziti =zinni

i = 1

=> MLE is the sample mean of the observations from the first dennity (DUH!).

1

sMc
,
me= -zil,

tomce
= S

,
=n ziti-ui-U Eas

Now p
:

set

) = = z) = O abo
what

wa
would

Op N expect!

EZ-pp-p E Iz
U

So if we knew which mixture component the data came from
, our life would be easy....

