
Methods of Maximizing the Likelihood
Maximum likelihood estimation requires maximization of the log likelihood

.ℓ(θ) = logL(θ|Y )

In most cases
,
this means taking derivatives and solving likelihood equations

11) = (E) = 0.

Sometimes we can do this analytically (yay !)

When an analytical solution doesn't exist
,

we have options :

-> standard optimization methods like Newton-Raphson

cor fancy ones like gradient descent)

=> EM algorithm .
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1 EM Algorithm
Approach solving the likelihood equation via viewing the observed data  as incomplete
and that there is missing data  that would make the problem simpler if we had it.

Example (Two-Component Mixture): Suppose  are iid from the mixture density

where  and  are bivariate normal densities with mean vectors  and  and variance
matrices  and , respectively. Thus, the parameter vector  and
the likelihood is
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Let’s try to maximize the likelihood

library(mvtnorm) ## multivariate normal

p = .6
mu1 <- c(0, 0)
sig1 <- matrix(c(1, 0, 0, 1), ncol = 2)
mu2 <- c(1.5, 1.5)
sig2 <- matrix(c(1, .6, .6, 1), ncol = 2)

## sample from the mixture
n <- 50
z <- rbinom(n, 1, p)

y1 <- rmvnorm(sum(z), mean = mu1, sigma = sig1)
y2 <- rmvnorm(n - sum(z), mean = mu2, sigma = sig2)  
y <- matrix(NA, nrow = n, ncol = 2) ## observed data
y[z == 1, ] <- y1
y[z == 0, ] <- y2

df <- data.frame(y, z)

## plot data
ggplot(df) +
  geom_point(aes(X1, X2)) +
  ggtitle("Observed (Incomplete) Data")

ggplot(df) +
  geom_point(aes(X1, X2, colour = as.character(z))) +
  ggtitle("Complete Data")
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Parameter Truth MLE1 MLE2
0.6 0.6771 0.6634
0.0 0.0307 0.0050
0.0 -0.0512 -0.0281
1.0 0.9757 0.9757
0.0 0.2178 0.2267
1.5 1.5597 1.5744
1.5 1.4815 1.4859
1.0 0.7161 0.7220
0.6 0.2679 0.2436

# loglikelihood of incomplete data--no knowledge of z
loglik_mixture <- function(par, data) {
    p <- plogis(par[1])  # p guaranteed to be in [0,1]
    mu1 <- c(par[2], par[3])
    sig1 <- matrix(c(exp(par[4]), par[5], par[5], 

exp(par[4])), nrow = 2)
    mu2 <- c(par[6], par[7])
    sig2 <- matrix(c(exp(par[8]), par[9], par[9], 

exp(par[8])), nrow = 2)
    # note:  exponential guarantees the diagonal elements 

are positive, but
    # nothing to guarantee matrices are positive definite. 

(Could do square root)

    out <- log(p * dmvnorm(data, mean = mu1, sigma = sig1) + 
                 (1-p) * dmvnorm(data, mean = mu2, sigma = 

sig2))
    return(sum(out))
}

## optimize from different starting values
mle1 <- optim(c(0, -.2, -.2, .5, 0, 2, 2, .5, 0), 

loglik_mixture, data = y, control = list(fnscale = -1))
mle2 <- optim(c(.405, 0, 0, 0, 0, 1.5, 1.5, 0, .6), 

loglik_mixture, data = y, control = list(fnscale = -1))
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Fitted results:

This seems pretty good… can we break this with initialization?

## [1] -137.7964

Parameter Truth MLE3
0.6 0.9873
0.0 0.0000
0.0 0.0000
1.0 1.0000
0.0 0.0000
1.5 1.8067
1.5 3.3712
1.0 0.0000

# Centered the second mixture component at a data point, and 
shrink 

# variance, so normal is super-concentrated around that 
point.

loglik_mixture(c(.6, 0, 0, 0, 0, y[30, 1], y[30, 2], -50, 
0), data = y)  

mle3 <- optim(c(.6, 0, 0, 0, 0, y[30, 1], y[30, 2], -50, 0), 
loglik_mixture, data = y, control = list(fnscale = -1))
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Parameter Truth MLE3
0.6 0.0000

What would change if we were given the complete data, where ?
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So if we knew which mixture component the data came from
, our life would be easy....


