1.1 Convergence of the EM algo... 8

1.1 Convergence of the EM algorithm

We will show that $\ell\left(\hat{\boldsymbol{\theta}}^{(k+1)}\right) \geq \ell\left(\hat{\boldsymbol{\theta}}^{(k)}\right)$. Ne will show that $\ell\left(\hat{\boldsymbol{\theta}}^{(k+1)}\right) \geq \ell\left(\hat{\boldsymbol{\theta}}^{(k)}\right)$.
In other words, each step of the EM algorithm deads to an improvement of the log-likelihood value. **1.1 Convergence of the EN**
We will show that $\ell(\hat{\theta}^{(k+1)}) \geq \ell(\hat{\theta}^{(k)})$
In other words, each step of the EM as
Thus, if the likelihood is <u>well behaved</u>,
Lis bounded, u it will achieve the MLE, otherwise the EM will achieve a local maxima (if free is one). ↳ bounded , unimodal .

$$
\Psi = \text{b}^{\text{bound}} \text{left}^{\text{left}}
$$
\n
$$
\mathcal{Z} = \text{hidden}^{\text{left}}
$$
\nWe know $f_{Z|Y}(z|y; \theta) = \frac{f_{YZ}(y,z;\theta)}{f_Y(y|\theta)}$.
\n
$$
\text{time for any } y_1 \neq 0
$$

$$
f_{Y}(y,e) = \frac{f_{yz}(y,z,e)}{f_{zy}(z|y,e)} \quad \text{for any } y,z
$$
\n
$$
\Rightarrow f_{y}(y,e) = \frac{f_{yz}(y,z,e)}{f_{zy}(z|y,e)} \quad \text{for every } e \in (not clear why).
$$

Assume we observe $\boldsymbol{y} = (y_1, \dots, y_n),$ then

 wat

Thus, if he likelihood is null behaved, using a case we will, generate the end and above a good
\nproduct
\n
$$
f(x)dx
$$
\n
$$
f(x
$$

$$
\mathbb{Q}(\hat{\theta}^{(k+1)}, \hat{\theta}^{(k)}) - \mathbb{H}(\hat{\theta}^{(k+1)}, \hat{\theta}^{(k)}) \geq \mathbb{Q}(\hat{\theta}^{(k)}, \hat{\theta}^{(k)}) - \mathbb{H}(\hat{\theta}^{(k)}, \hat{\theta}^{(k)}) - \mathbb{H}(\hat{\theta}^{(k)}, \hat{\theta}^{(k)})
$$
\n
$$
\mathbb{Q}(\hat{\theta}^{(k)}, \hat{\theta}^{(k)}) = \mathbb{Q}(\hat{\theta}^{(k)}, \hat{\theta}^{(k)}) - \mathbb{H}(\hat{\theta}^{(k)}, \hat{\theta}^{(k)})
$$
\n
$$
\mathbb{Q}(\hat{\theta}^{(k)}, \hat{\theta}^{(k)}) = \mathbb{Q}(\hat{\theta}^{(k)}, \hat{\theta}^{(k)}) - \mathbb{H}(\hat{\theta}^{(k)}, \hat{\theta}^{(k)})
$$
\n
$$
\mathbb{Q}(\hat{\theta}^{(k)}) \mathbb{E}_{\theta}(\hat{\theta}^{(k)}) \mathbb{E}_{\theta
$$

$$
\mathcal{L}(\underline{\theta}|\underline{Y}) \left\{ f_{\underline{z}|y}(\underline{z}|y; \hat{\theta}^{(k)}) dz = ... \right\}
$$

\n
$$
\mathcal{L}(\underline{\theta}|\underline{Y}) \left\{ f_{\underline{z}|y}(\underline{z}|y; \hat{\theta}^{(k)}) dz = ...
$$

\n
$$
\Rightarrow \mathcal{L}(\underline{\theta}|\underline{Y}) = Q(\underline{\theta}, \hat{\theta}^{(k)}) - \mathcal{H}(\underline{\theta}, \hat{\theta}^{(k)})
$$

function of F!)

 $\textbf{Step 1:} \text{Show that } H(\boldsymbol{\theta}, \boldsymbol{\hat{\theta}}^{(k)}) \text{ is maximized when } \boldsymbol{\theta} = \boldsymbol{\hat{\theta}}^{(k)}.$

i.e.
$$
H(\hat{\theta}^{(k)}, \hat{\theta}^{(k)}) \ge H(\theta, \hat{\theta}^{(k)})
$$
 for any $\theta \in \Theta$.

Recall: Jensen's Inequality. A function Φ is convex if $\Phi(\frac{x_1+x_2}{2}) \leq \frac{1}{2}\Phi(x_1) + \frac{1}{2}\Phi(x_2)$. Then 1 2 1 2

$$
\Phi(\mathrm{E}[g(X)])\leq \mathrm{E}[\Phi(g(X))],
$$

 \Leftrightarrow

where g is a real-valued integrable function.

$$
\Rightarrow H(\hat{\theta}^{(k)}, \hat{\theta}^{(k)}) - H(\theta, \hat{\theta}^{(k)}) = \int (log(f_{z|y}(z|y; \hat{\theta}^{(k)})) - log(f_{z|y}(z|y; \theta)) f_{z|y}(z|z; \hat{\theta}^{(k)}) dz
$$
\n
$$
= \int -log \left(\frac{f_{z|y}(z|y; \hat{\theta}^{(k)})}{f_{z|y}(z|y; \hat{\theta}^{(k)})} \right) f_{z|y}(z|y; \hat{\theta}^{(k)}) dz
$$
\n
$$
\geq -log \left(\frac{f_{z|y}(z|y; \hat{\theta}^{(k)})}{f_{z|y}(z|y; \hat{\theta}^{(k)})} \right) f_{z|y}(z|y; \hat{\theta}^{(k)}) dz
$$
\n
$$
= -log \left(\frac{f_{z|y}(z|y; \hat{\theta}^{(k)})}{f_{z|y}(z|y; \hat{\theta}^{(k)})} \right)
$$
\n
$$
= -log \left(\frac{f_{z|y}(z|y; \hat{\theta}^{(k)})}{f_{z|y}(z|y; \hat{\theta}^{(k)})} \right)
$$
\n
$$
\Rightarrow H(\hat{\theta}^{(k)}, \hat{\theta}^{(k)}) \geq H(\hat{\theta}, \hat{\theta}^{(k)}) \quad \forall \hat{\theta}, \text{ if } \hat{\theta}^{(k)} \in \mathcal{A}
$$

 $= H(\underline{\theta}, \underline{\hat{\theta}}^{(k)}) \forall \underline{\theta}.$

Step 2: Find a
$$
\hat{\theta}^{k+1}
$$
 that will optimize Q.
\n
$$
\begin{aligned}\n\text{Recall} & \text{gou} \quad \text{is to find} \quad \hat{\theta}^{(k+1)} \text{ s.t.} \quad \text{Re}(\hat{\theta}^{(k+1)}) \equiv \text{Re}(\hat{\theta}^{(k)}) + \text{Re}(\hat{\theta}) = \text{Re}(\hat{\theta} \cdot \hat{\theta}^{(k)}) - \text{Im}(\hat{\theta} \cdot \hat{\theta}^{(k)}) \\
\text{Let} & \hat{\theta}^{(k+1)} = \text{argmax} \quad \hat{\theta} \left(\sigma \right) \hat{\theta}^{(k)} .\n\end{aligned}
$$
\nThis is the

We know
$$
H(\frac{\Delta(u)}{\mu}, \frac{\Delta(v)}{\mu}) \leq H(\frac{\Delta(v)}{\mu}, \frac{\Delta(v)}{\mu})
$$
 because the f with all f
+ $\mathbb{Q}(\frac{\Delta(u)}{\mu}, \frac{\Delta(v)}{\mu}) \geq \mathbb{Q}(\frac{\Delta(v)}{\mu}, \frac{\Delta(v)}{\mu})$ by optimization.

$$
L(\underline{\theta}^{(k)}) = Q(\underline{\theta}^{(k)}, \underline{\theta}^{(k)}) - H(\underline{\theta}^{(k)}, \underline{\theta}^{(k)})
$$

$$
\leq Q(\underline{\theta}^{(k)}, \underline{\theta}^{(k)}) - H(\underline{\theta}^{(k)}, \underline{\theta}^{(k)})
$$

$$
\leq Q(\underline{\theta}^{(k)}, \underline{\theta}^{(k)}) - H(\underline{\theta}^{(k)}, \underline{\theta}^{(k)}) = Q(\underline{\theta}^{(k+1)})
$$

Example (Two-Component Mixture, Cont'd):

$$
Q(F, \hat{\theta}^{(n)}) = \int \log f_{YB}(f, \mathbf{z}_{j} \in \mathcal{D} f_{Bp}(\mathbb{Z}/f, \hat{\theta}^{(n)}) d\mathbb{Z}
$$

\nFor the Gaussian matrix, \mathbf{p}_{B} tangent \mathbf{p}_{B} .
\n
$$
Log f_{YE}(f, \mathbf{z}_{j} \in \mathcal{D}) = \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}
$$

 I_n general con't clerays separate $E + M$ in this way for Q.

The EM algorithm allows us to obtain $\hat{\theta}_{EM}$, the parameter estimate which optimizes the algorithm.

Which, if the Libelihood is "nice" can = $\hat{\theta}_{MLE}$.