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1.1 Convergence of the EM algorithm

We will show that .

We know .

Assume we observe , then

So, in order to show that , this is the same as

ℓ(θ̂(k+1)) ≥ ℓ(θ̂(k))

fZ|Y (z|y;θ) =
fYZ(y,z;θ)
fY (y|θ)

y = (y1,… , yn)

ℓ(θ̂(k+1)) ≥ ℓ(θ̂(k))

In other words
,

each step of the EM algorithm leads to an improvement of the log-likelihood value.

Thus
, if the likelihood isllbehaved, it will achieve the MLE

,
otherwise the fl with achise a local

maxima (if free is one).

↳ bounded
,

unimodal.

↳ observedata sta
defin of

conditional density

true for any y ,
E

=> fileie) : zi just rewritten (not clearlya

(11) = -(i) = E (it vid
, product of miranite destsa

holds for any E!

-
=> e(f) = Coyff(7;) = boy fyz)] , Zie) - logfelie)=17)

e Mikaliland"&
log likelihood ofCompletedata"

log likelihood of data I
Y
,

Z

want to optimize.
=> take expected value wit El4j"

&((() - H(m) = Q(E) - H(**** SELET1) fzjdz = GloyfyzBEit fzElj]dE
-

SchogtzilelzitfzEla;) de

eE)lEld
=> 10(1) = Q(E, 8) = H(E, (4)

function of F ! )
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Step 1: Show that  is maximized when .

Recall: Jensen’s Inequality. A function  is convex if . Then

where  is a real-valued integrable function.

H(θ,θ(k)) θ = θ(k)

Φ Φ( ) ≤ Φ(x1) + Φ(x2)
x1+x2

2
1
2

1
2

Φ(E[g(X)]) ≤ E[Φ(g(X))],

g

A A

i.e . H(@) =H(E,
1) for any EEHl .

↳

Fact : -log is convex
#(Sg(x)fludi) [S Elgbi)flicida where flat is

a - 10y(7) dusity of X.

#Ep + Ex-by

- log()
(non regative).

Consider H**) - H(E, )
.

WiS this is positive

H(E,) =

Slog (fz(Elie)) Szylel:) dz

=> H(, ) -H(,) = S(log (tzu(E17;)) - log (fz(; E))FzEj) de
=

Solog(i) +zp(z)dz

e
= 0

=>H, ) =H(E ,
E) # G · /
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Step 2: Find a  that will optimize .θk+1 Q
A

Recall goal is to find ED (
*) ↓ ((E) = Q(E** -H(

,E)

-

let Elk+i
=

arymax
Q(E

,
E.

Thisishe algorithm.

We know H( ***Y [H(E) because tre for all E

↓ Q(()[Q(E) by optimization.

So
, I( **) = Q(EE") -H

= QE*) - H(E)
= l(E)/
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Example (Two-Component Mixture, Cont’d):

The EM algorithm allows us to obtain , the parameter estimate which optimizes the
algorithm.

θ̂EM

Q(t,**) = S log fyz), zjE)Fzp(El; 8) dz
For the Gaussian mixture

, the complete log-likelihood :

logfuz)1 ,Eit) = Ezilogf
, (im ,

5
, ) + (1-zi) logtz (iitE2) + Zilogp + (1-zi)log(-p)3.

To get the conditional density
, fz(Ely)= /Zil;; )

fzy(zilyi)= Zicomplete deaunti
a b c

f, lyi; ,]((-)falzi ;i gy
:Zi

(f
, (yju, ) + (1-p()falyi, )

define

Zieno
Zili =y,

Ele Bern (W)·

=> Q,) = Ezpilfyz] and
=g(g

&(,()= f
,(i) + (log M

,
+logp + xg(-p]

=t
(l-Wic [Zilogf, (i < M

,
5

, ) + (Zi) logfc(i;M2
,
S2 + zilogp + (i) log(p)]z

which yields the intuitive expression from before !

So "plugging in the weights" makes sense from an optization standpointthis example.

In general can't always separate E ↓ M in this Way for Q.

-

Which
,
if the likelihood is "nice" can = Once


