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2 Pro�le Likelihood
The term “pro�le likelihood” can mean multiple things.

2.1 Analytical Methods via Pro�le Likelihoods

In certain problems it is possible to maximize the log likelihood for part of 
without actually knowing the value of the other part.

The pro�le likelihood is the usual likelihood with the known function of part of the
parameter vector inserted for that parameter, making the likelihood only a function of one
part of the vector.
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⊤
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In all cases
,

this is a way to assess uncertainty (or get a point estimate) in a portion of the

parameter while essentially ignorily the others.
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1.e . the profile likelihood is L(EELA)) is a function of of Ev (lower dimension).

The we red only maximize L(EE(t))
wat En to get =E = Ez(En

·

In this case we are assuming we can write ELE1) out as an analytical function (at the MLE).
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Example (Hurricane Data, Cont’d): For  hurricanes that had moved far inland on the
East Coast of the US in 1900-1969, maximum 24-hour precipitation levels during the
time they were over mountains.

We modeled the precipitation levels with a gamma distribution, which has log likelihood

36

ℓ(α,β) = −n log Γ(α) − nα logβ+ (α− 1)∑ logYi −
∑Yi

β

Taking a partial
derivative wrt B :

=Sai
=> B(X)= and we can substitute this back into l, B) :

e(d , 5()) = - nlog(() - na) log5 - loga) + (x - 1) [logy ; - m

g

"profile log-likelihood"
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gamma_prof_loglik <- function(alpha, data) {
  beta <- mean(data) / alpha
  sum(dgamma(data, alpha, scale = beta, log = TRUE))
}

## get maximum profile likelihood estimate
alpha_mple <- optim(1, gamma_prof_loglik, data = hurr_rain, 

method = "BFGS", control = list(fnscale = -1))

## plot profile likelihood
data.frame(alpha = seq(1, 3, length.out = 200)) |>
  rowwise() |>
  mutate(p_log_lik = gamma_prof_loglik(alpha, hurr_rain)) |>
  ggplot() +
  geom_line(aes(alpha, p_log_lik)) +
  geom_vline(aes(xintercept = alpha_mple$par), lty = 2)

4
= 2019

=>= 3 . 3

same values we found before by maximizing

elx
, b) in 2 dimensions , but we only needed to

optimize a function in 1 dimension.
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2.2 Numerical Methods via Pro�le Likelihoods

The log likelihood can be maximized over one portion of the partition  for
any �xed value of the other, even if that maximization cannot be expressed as an explicit
function.

We can de�ne a pro�le likelihood as

The pro�le likelihood and log pro�le likelihood behave in many ways like true likelihood
functions:

1. The estimate of  found by maximizing  is the MLE of .

2. A likelihood ratio test statistics formed with the pro�le likelihood has a limiting 
distribution.

3. A pro�le likelihood con�dence region is a valid approximate con�dence region for .

θ = (θ⊤1 ,θ
⊤
2 )

⊤

Lp(θ2) = max
θ1

L(θ1,θ2).

θ2 Lp(θ2) θ2

χ2

θ2

2 in other words
,

this can still be useful if both optimizations are done nuncially !

This is the most commonly found sitization for profile likelihood methods.

more formally

B
for any GEO,

&

Then the log profile likelihood is

eP(E) = max log
L (i) -

-
simultaneous

.
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=
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-

For dim(E2) = p-r
dim (E) = r

T(E) = -2 [l(i) - 10) Esml]-
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gives approximately right corrage.

CI : Eti : -2[li) - l%miz)] = Yo
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Where does this con�dence region come from?

However, these are not full likelihood functions.

This is an inverted profile likelihood ratio test.

Let r= 1
,

then look at the profile likelihood ratio test:Ho: is
the true parameter.

then X = -2[lP(0) - 1P(Fmce)] iX asymptotically based on properties of
LRT.

- quartie of Xp = 3, 84

P(-2(1 %(i) -eP(Emuz)] > go.as) = 0. 05

=> - 2(lP(t:) - eP(f, mue)] > 3. 84

solve togetan
interalikelihood surface

e
% (i) -eP(Funce) < -1. 92 -

that based on fisher Information
(which will

L

e(0: ) < ence) - 1092 recessarily be symmetric).

The derivatives of profile likelihoods don't behave like frederivatives of full likelihoods,
e.g.

Exped 0 necessarily

When we hold E2 fixed
,
the uncertainty in estimator of F2 is ignored in the uncertainty of estimation ofE

= there is not a "Wald-type" (Normal) theory for profile likelihood estimates.


