
Methods of Maximizing the Likelihood
Maximum likelihood estimation requires maximization of the log likelihood

.ℓ(θ) = logL(θ|Y )
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1 EM Algorithm
Approach solving the likelihood equation via viewing the observed data  as incomplete
and that there is missing data  that would make the problem simpler if we had it.

Example (Two-Component Mixture): Suppose  are iid from the mixture density

where  and  are bivariate normal densities with mean vectors  and  and variance
matrices  and , respectively. Thus, the parameter vector  and
the likelihood is

Y

Z

Y1,… ,Yn

f(y;θ) = pf1(y;μ1, Σ1) + (1 − p)f2(y;μ2, Σ2),

f1 f2 μ1 μ2
Σ1 Σ2 θ = (p,μ1,μ2, Σ1, Σ2)

L(p,μ1,μ2, Σ1, Σ2) =
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Let’s try to maximize the likelihood

library(mvtnorm) ## multivariate normal

p = .6
mu1 <- c(0, 0)
sig1 <- matrix(c(1, 0, 0, 1), ncol = 2)
mu2 <- c(1.5, 1.5)
sig2 <- matrix(c(1, .6, .6, 1), ncol = 2)

## sample from the mixture
n <- 50
z <- rbinom(n, 1, p)

y1 <- rmvnorm(sum(z), mean = mu1, sigma = sig1)
y2 <- rmvnorm(n - sum(z), mean = mu2, sigma = sig2)  
y <- matrix(NA, nrow = n, ncol = 2) ## observed data
y[z == 1, ] <- y1
y[z == 0, ] <- y2

df <- data.frame(y, z)

## plot data
ggplot(df) +
  geom_point(aes(X1, X2)) +
  ggtitle("Observed (Incomplete) Data")

ggplot(df) +
  geom_point(aes(X1, X2, colour = as.character(z))) +
  ggtitle("Complete Data")
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Parameter Truth MLE1 MLE2
0.6 0.6771 0.6634
0.0 0.0307 0.0050
0.0 -0.0512 -0.0281
1.0 0.9757 0.9757
0.0 0.2178 0.2267
1.5 1.5597 1.5744
1.5 1.4815 1.4859
1.0 0.7161 0.7220
0.6 0.2679 0.2436

# loglikelihood of incomplete data--no knowledge of z
loglik_mixture <- function(par, data) {
    p <- plogis(par[1])  # p guaranteed to be in [0,1]
    mu1 <- c(par[2], par[3])
    sig1 <- matrix(c(exp(par[4]), par[5], par[5], 

exp(par[4])), nrow = 2)
    mu2 <- c(par[6], par[7])
    sig2 <- matrix(c(exp(par[8]), par[9], par[9], 

exp(par[8])), nrow = 2)
    # note:  exponential guarantees the diagonal elements 

are positive, but
    # nothing to guarantee matrices are positive definite. 

(Could do square root)

    out <- log(p * dmvnorm(data, mean = mu1, sigma = sig1) + 
                 (1-p) * dmvnorm(data, mean = mu2, sigma = 

sig2))
    return(sum(out))
}

## optimize from different starting values
mle1 <- optim(c(0, -.2, -.2, .5, 0, 2, 2, .5, 0), 

loglik_mixture, data = y, control = list(fnscale = -1))
mle2 <- optim(c(.405, 0, 0, 0, 0, 1.5, 1.5, 0, .6), 

loglik_mixture, data = y, control = list(fnscale = -1))

p

μ11

μ12

Σ111
Σ112
μ21

μ22

Σ211
Σ212
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Fitted results:

This seems pretty good… can we break this with initialization?

## [1] -137.7964

Parameter Truth MLE3
0.6 0.9873
0.0 0.0000
0.0 0.0000
1.0 1.0000
0.0 0.0000
1.5 1.8067
1.5 3.3712
1.0 0.0000

# Centered the second mixture component at a data point, and 
shrink 

# variance, so normal is super-concentrated around that 
point.

loglik_mixture(c(.6, 0, 0, 0, 0, y[30, 1], y[30, 2], -50, 
0), data = y)  

mle3 <- optim(c(.6, 0, 0, 0, 0, y[30, 1], y[30, 2], -50, 0), 
loglik_mixture, data = y, control = list(fnscale = -1))

p

μ11

μ12

Σ111
Σ112
μ21

μ22

Σ211
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Parameter Truth MLE3
0.6 0.0000

What would change if we were given the complete data, where ?

Σ212

Zi
iid
∼ Bern(p)
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Consider the complete log-likelihood:

We could consider the ’s as “weights” which represent our current believe in which
density each datum come from.

Given what our belief is in the weights of the data, what is our estimate of the model
parameters?

ℓ(p,μ1,μ2, Σ1, Σ2|Y ,Z) =
n

∑
i=1

{Zi log f1(Yi;μ1, Σ1) + (1 − Zi) log f2(Yi;μ2, Σ2)

+Zi log p+ (1 − Zi) log(1 − p)} .

Zi
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This is the basic intuition for the EM algorithm. We will view our data  as incomplete
and imagine there is missing data  that would make the problem simpler if we had it.
The EM algorithm then follows:

Example (Two-Component Mixture, Cont’d): The EM algorithm for the two-component
Gaussian mixture model is

Your Turn: Implement the EM algorithm for the two-component mixture model on our
example data.

Y

Z
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1.1 Convergence of the EM algorithm

We will show that .

We know .

Assume we observe , then

So, in order to show that , this is the same as

ℓ(θ̂(k+1)) ≥ ℓ(θ̂(k))

fZ|Y (z|y;θ) =
fYZ(y,z;θ)
fY (y|θ)

y = (y1,… , yn)

ℓ(θ̂(k+1)) ≥ ℓ(θ̂(k))
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Step 1: Show that  is maximized when .

Recall: Jensen’s Inequality. A function  is convex if . Then

where  is a real-valued integrable function.

H(θ,θ(k)) θ = θ(k)

Φ Φ( ) ≤ Φ(x1) + Φ(x2)
x1+x2
2

1
2

1
2

Φ(E[g(X)]) ≤ E[Φ(g(X))],

g
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Step 2: Find a  that will optimize .θk+1 Q
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Example (Two-Component Mixture, Cont’d):

The EM algorithm allows us to obtain , the parameter estimate which optimizes the
algorithm.

θ̂EM
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1.2 Variance Estimation for EM estimates

The EM algorithm find the MLE, but it does not automatically produce an estimate of the
covariance matrix. Why not?

There are several options to estimate the variance.

1. Bootstrapping
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2. Louis’s Method
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1.3 Another way to cluster: K-means

Goal of clustering:

Methods for clustering include hierarchical and non-hierarchical, algorithmic and model-
based.
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K-means is a simple and elegant approach to partition a data set into  distinct, non-
overlapping clusters.

The -means clustering procedure results from a simple and intuitive mathematical
problem. Let  denote sets containing the indices of observations in each cluster.
These satisfy two properties:

1. 

2. 

Idea:

K

K

C1,… ,CK
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The within-cluster variation for cluster  is a measure of the amount by which the
observations within a cluster differ from each other.

To solve this, we need to define within-cluster variation.

This results in the following optimization problem that defines -means clustering:

A very simple algorithm has been shown to find a local optimum to this problem:

Ck

K
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Questions about the algorithm:

1. How do we define distance?

2. How do we choose starting values?

3. How do we choose ?

Compared to the Gaussian mixture problem,

k
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2 Profile Likelihood
The term “profile likelihood” can mean multiple things.

2.1 Analytical Methods via Profile Likelihoods

In certain problems it is possible to maximize the log likelihood for part of 
without actually knowing the value of the other part.

The profile likelihood is the usual likelihood with the known function of part of the
parameter vector inserted for that parameter, making the likelihood only a function of one
part of the vector.

θ = (θ⊤1 ,θ
⊤
2 )

⊤
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Example (Hurricane Data, Cont’d): For  hurricanes that had moved far inland on the
East Coast of the US in 1900-1969, maximum 24-hour precipitation levels during the
time they were over mountains.

We modeled the precipitation levels with a gamma distribution, which has log likelihood

36

ℓ(α,β) = −n log Γ(α) − nα logβ+ (α− 1)∑ logYi −
∑Yi

β
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gamma_prof_loglik <- function(alpha, data) {
  beta <- mean(data) / alpha
  sum(dgamma(data, alpha, scale = beta, log = TRUE))
}

## get maximum profile likelihood estimate
alpha_mple <- optim(1, gamma_prof_loglik, data = hurr_rain, 

method = "BFGS", control = list(fnscale = -1))

## plot profile likelihood
data.frame(alpha = seq(1, 3, length.out = 200)) |>
  rowwise() |>
  mutate(p_log_lik = gamma_prof_loglik(alpha, hurr_rain)) |>
  ggplot() +
  geom_line(aes(alpha, p_log_lik)) +
  geom_vline(aes(xintercept = alpha_mple$par), lty = 2)
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2.2 Numerical Methods via Profile Likelihoods

The log likelihood can be maximized over one portion of the partition  for
any fixed value of the other, even if that maximization cannot be expressed as an explicit
function.

We can define a profile likelihood as

The profile likelihood and log profile likelihood behave in many ways like true likelihood
functions:

1. The estimate of  found by maximizing  is the MLE of .

2. A likelihood ratio test statistics formed with the profile likelihood has a limiting 
distribution.

3. A profile likelihood confidence region is a valid approximate confidence region for .

θ = (θ⊤1 ,θ
⊤
2 )

⊤

Lp(θ2) = max
θ1

L(θ1,θ2).

θ2 Lp(θ2) θ2

χ2

θ2
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Where does this confidence region come from?

However, these are not full likelihood functions.


