
Let’s try it.

## [1] 0.003650963

## [1] 0.003650963

library(evd)
# simulate data with alpha = 0.5
alpha <- 0.5
z <- rmvevd(500, dep = alpha, d = 5, mar = c(1, 1, 1))

## bivariate density
d_bivar <- function(z, alpha){
    #here "z" is a single observation (ordered pair)
    inside <- z[1]^(-1/alpha) + z[2]^(-1/alpha)
    one <- exp(-inside^alpha)
    two <- (z[1]*z[2])^(-1 / alpha - 1)
    three <- (1 / alpha - 1)*inside^(alpha - 2)
    four <- inside^(2 * alpha - 2)
    one*two*(three + four)
}
    
d_bivar(c(4, 5), alpha = alpha)

dmvevd(c(4,5), dep = alpha, d = 2, mar = c(1,1,1))

## estimate alpha
log_pair_lhood <- function(alpha, z) {
    #here "z" is bivariate matrix of observations
    inside <- z[, 1]^(-1 / alpha) + z[, 2]^(-1 / alpha)
    log_one <- -inside^alpha
    log_two <- (-1 / alpha - 1) * (log(z[, 1]) + log(z[, 

2]))
    three <- (1 / alpha - 1) * inside^(alpha - 2)
    four <- inside^(2 * alpha - 2)  
    contrib <- log_one + log_two + log(three + four)
    return(sum(contrib))
}



## [1] 0.4954979 0.5182678

## [1] 0.745

all_pairs_lhood <- function(alpha, z) {     
expand.grid(dim1 = seq_len(ncol(z)),                 dim2 = 
seq_len(ncol(z))) |>       filter(dim1 < dim2) |>       
rowwise() |>       mutate(log_pair_lhood = 
log_pair_lhood(alpha, cbind(z[, dim1], z[, dim2]))) |>     
ungroup() |>       summarise(res = sum(log_pair_lhood)) 
|>       pull(res) } alpha_mple <- 
optim(.2, lower = .01, upper = .99, all_pairs_lhood, z = z, method = 
"Brent", hessian = TRUE, control = list(fnscale = -1))

(ci_mple <- alpha_mple$par + c(-1.96, 1.96)*sqrt(-1 / 
alpha_mple$hessian[1, 1]))

## checking coverage
#checking coverage
B <- 200
coverage <- numeric(B)
for(k in seq_len(B)) {
    z_k <- rmvevd(500, dep = .5, d = 5, mar = c(1, 1, 1))
    alpha_mple_k <- optim(.2, lower = .01, upper = .99, 

all_pairs_lhood, z = z_k, method = "Brent", hessian = TRUE, control = 
list(fnscale = -1))

    ci <- alpha_mple_k$par + c(-1.96, 1.96)*sqrt(-1 / 
alpha_mple_k$hessian[1, 1])

    coverage[k] <- as.numeric(ci[1] < alpha & ci[2] > alpha)
}
mean(coverage)
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So, it looks like the point estimate from the pairwise likelihood is ok, but we need to be
able to get an appropriate measure of uncertainty.

The proper adjustment is

it is

↓

CI :

Recall if Once is the estimate from the correct model and I is the the value of the parameter ,
the

(Eme-E)N(0,
I()")

So for fixed, large n,
mce

-N/E, IET")
where I(E) = = [loy f(Y , E))) otlog F(Y · ED)] "variance of the score"

If this is- = [-otlogf(E)] " hessian of score contribution"

the correct
mocht !

In practice ,
with the

tmodel
,

- ICET" = (nICt] 2 nICE) is approximated with nECOnce)=-One
This is wrong

in the misspecified case !

(A .
C . Davidson

,
statistical models

, p.

17).

Ex-N)E ,
ICT"KEIE) where KIE) = nEllothytole) (otetol)
um and I(f) = onE[logfp(j)]

estations" "sandwich estimator"

where to is theairwise
density.

the incorrectly specified model.

We will approach this form more general discussion of M-estimator/estimating equations .

Chot just pairwise).
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1 Introduction

M-estimators are solutions of the vector equation

In the likelihood setting, what is ?

n

∑
i=1

ψ(Yi,θ) = 0.

ψ

There are 2 parts of a fully specified statistical mode :

① Systematic part (mean) used for answering the underlying scientific questionly => likelihood

② distributional assumptions about the random part of the model inference.

We want to develop robust infeance so that misspecification of Q doesn't invalidate the inference.

"estimating equations"

=> we want to define an estimator of interest as the solution to some equation, but it might not

come from the derivative of a log likelihood.

i. e
. if Eisan "M-estimator"

(i) =

&

.

Notes
:

4 are independent (not necessarily in do e.g . regression).

E is a b-dim
, parameter

I is a known bx1 function that does not depend on i or n
,
but can depend on Ei for regression.

regression : above equation(:, E) =
1

.

- iste derrativeHelog-likehard
the sco fant.

Op-type : solutions which minimizeP(i,)

② P-type : solutions & to,=
8

.

often an M-estimator is of both types , i. e . if p has a continuous first derivativeaot E
,

then

an M-estimator of P-type is an M-estimator of P-type with ↑( ·E ) = Top (yc#
)·



7 1 Introduction

Example: Let  be independent, univariate random variables. Is 

an M-estimator?

Y1,… ,Yn θ =
¯̄¯̄
Y =

n

∑
i=1

Yi
1
n

①4-type?

=

=> 0 =-== Y(it) = Yi -0

② g-type? What does the sample mean minimize?

m= (Y
,
-2=

-2

To minimize
,

+ 2n

=
N

·
pltis
y &

my
Y

I-
We will mainly focus on P-type M-estimators because it is more straight forward to get our

Sandwich estimator matrix.

But can be useful to think of underlying &-type estimator you hadto take derivative to get o-type.
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Example: Consider the mean deviation from the sample mean,

Is this an M-estimator?

θ̂1 =
n

∑
i=1

|Yi −
¯̄¯̄
Y |.

1
n

MAD
A measure of spread.

To calculate this , requires 2 steps :

① Calculate T => no single equation of the form P(T
,
) =0 can be formed,

② Calculate MAD

But a system of equations of P-type can be written !

ht tz=

P(y , tz) =

y-

↑
o (y,

0
, ,2) = ly- E2l-fr

So =(, ) will solve

&Pic, ) =(i)
Even though at first the MAD doesn't look like an M-estimator

,
with a little work we

can write it as one .
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2 Basic Approach
M-estimators are solutions of the vector equation

but what are they estimating?

Example (Sample Mean, cont’d): Recall we said  is an M-estimator for

. What is the true parameter?

n

∑
i=1

ψ(Yi,θ) = 0.

θ =
¯̄¯̄
Y =

n

∑
i=1

Yi
1
n

ψ(Yi, θ) = Yi − θ

(the theory) .

- Did case.

Some true parameterGo ,
where

# Er [I(YEo)] = SYly ; fo)df(y) = - where yef.

The true parameter solves Sly-f0)df(y) = 0

=> Sydfly) = to
~

This agreesw/ the definition of the population meas -

Recall the 5-dimensional motivating example.
We said the 2 which maximizes the pairwise

likelihood seems like it would be a good estimator for do
.

We didn't show this .
To do so

, we would need to use (*).

Try this at home.


