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To arrive at the sandwich estimator, assume  and de�ne

Taylor expansion of  around  evaluated at  yields

Y1,… ,Yn
iid
∼ F

Gn(θ) =
n

∑
i=1

ψ(Yi;θ).
1
n

Gn(θ) θ0 θ̂

a

depends on n

In the likelihood case :

function
or deriv of log likelihood contribution

u
mean derivative of log likehood contributions.

= Gn()
= Gn(Ed)+

- ↑

bx1 bx) bxb Jacobian by
&

higher order "residual"

Rearranging :

- G()(-(0) = Gn(80) + Rn

-Er =

E-EnCE"Gala
-E0)=(0)+

Let's look at each piece.
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De�ne .A(θ0) = EF [−ψ′(Y1,θ0)]

&G()= -Gn()=4)= ; t0)

Then-G* (10) -> PACEO) by WLLN ·

In the likelihood setting ,
what is A? Curvature ! because I is the scre function(derivative of log-likelihood).

=>Y" is the 2nd derivative of the log-likelihood.

* En(t) = rict=Mo- NJ0 ,
BLEo)) .

because this is a sum of correctly scalediid things.

What is BCEO) ? Should be the variance of I

BlEo) = EF [I(YEo) TYcEo]

* R
*
- 00

- this is the hard part to prove .
We will skip ,

see Huber (1967) on Serfling (1980).

So
, putting I's together,

slutsky's
In (E-fo] - SA(t3N(G ,

B(to))

-> N(G
,
ACE)

" BlEo)(ACET)

or
,

8 iN (Eo, Alt" BLESALE "ST)
1

In practice ,
we don't know 80 => replace with :

iN(to, ACE" B(E) SALETT)
↑ ↑ ↑

curvature variance curvature

brand meat bread Sandwich !
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2.1 Estimators for 

If the data truly come from the assumed parametric family ,

One of the key contributions of M-estimation theory is to point out what happens when the
assumed parametric family is not correct.

We can use empirical estimators of  and :

A,B

f(y;θ)

A B

then ACEo) = B(Eo) = I(Go)
wa

information matrix.

where AlEo) and BLEo) are the 2 definitions of ICE0).

=> the sandwich estimator Alt
*

BLEOEA(o)"3
*

= I(80)"

Then Alto) #BCEO) and we should use the correct limiting distribution covariance matrix.

ATEo) BlEdEA(to)"3T.

An(1
,
)=e evaluated at

Bn(7, ) =Y()T
variance estimate.

&
might need to use numeric

differentiation to approximate.

Remember
,

the Hessian in code is nAn(1
,

E).

=> need EnAnCl3
*

[Ba(E) 3EnAnts]]T
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Example (Coef�cient of Variation): Let  be idd from some distribution with �nite
fourth moment. The coef�cient of variation is de�ned at .

De�ne a three dimensional  so that  is de�ned by summing the third component. What
is the vector valued function  which yields an M-estimator for the coef�cient of
variation?

Y1,… ,Yn
θ̂3 = sn/

¯̄¯̄
Y

ψ θ̂3
ψ

e

How would we get a

CF for the coeficient of variation=

unknown don.

We'll try M-estimation.

& (i
, e)=

: ) = ( )
=> division by D

,

not n-.

L

82=-,
2

= Sig

E3= note : not a function of data,a



2.1 Estimators for A,BA,B olds… 14

What parameter vector is being estimated by the M-estimator?

What are the matrices  and ?A B

E(Y(ycE)] = <[Y
,
-8) = M- G 0 = f

,

= M

& (4(4 , 01] = E[(y -f
,
) - t,

to => E = Vary
,

E [Yg(Y ,
E)] = ECtEs-rE)=-On> E=

=> (M
A = f(-Y,%)

,
Ele)=

Ye
A =2(4Mt)) = Too
B = = [[(Ed) [ (Y, 807]

=z((-0.
72 (

:-[7-F- *2] (3-,
11t

,tz-vl

G-0)[(,-0,
3 -2] [D-FE-*]* [P-)- *) (8,

0-E)I (4
,

- 07 (Ezz) [14:-8,
7"=][053-TE] Q0E -Ecl

&
Ms O

= Ju My-6 o) whe Mi = < (( -1)

O
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Write out the asymptotic variance, .V
V = A

+
B(A

- 1) T

A = Do 000)
ming now operations (net ona

C#B =(d)=
Y26M- EBLT

=I
- 6/2

(- Yu

My -
My-6( Ms My-6Y

-6 (26M

-
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Assume  are iid from a normal distribution with mean  and standard deviation .
Calculate . Assume you have a same of size  and you get an estimated coef�cient of
variation of . Give the asymptotic % con�dence interval.

Yi 10 1
V3,3 25
0.11 95

ple

V3
,
3

= from por page.

If Y
,
WN10, 1)

, My
= 0

, My = 3 (properties of moments of Nasa).

=> Usi
= 00051

n = 25 => vw()==, 00020

CI: /1 ! 1 .96one

i

( .
082 ,

·
138).


