
Estimating Equations

Example: Consider the  with cdf

Comments:

1.  is max-stable.

2.  are exchangeable.
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Let’s consider the likelihood.



How about if we were to just use pairs of points to estimate ?

If we just used  would the likelihood based on the bivariate density be
a good estimator for ?

α

(z1i, z2i), i = 1,… ,n
α



Let’s try it.

## [1] 0.003650963

## [1] 0.003650963

library(evd)
# simulate data with alpha = 0.5
alpha <- 0.5
z <- rmvevd(500, dep = alpha, d = 5, mar = c(1, 1, 1))

## bivariate density
d_bivar <- function(z, alpha){
    #here "z" is a single observation (ordered pair)
    inside <- z[1]^(-1/alpha) + z[2]^(-1/alpha)
    one <- exp(-inside^alpha)
    two <- (z[1]*z[2])^(-1 / alpha - 1)
    three <- (1 / alpha - 1)*inside^(alpha - 2)
    four <- inside^(2 * alpha - 2)
    one*two*(three + four)
}
    
d_bivar(c(4, 5), alpha = alpha)

dmvevd(c(4,5), dep = alpha, d = 2, mar = c(1,1,1))

## estimate alpha
log_pair_lhood <- function(alpha, z) {
    #here "z" is bivariate matrix of observations
    inside <- z[, 1]^(-1 / alpha) + z[, 2]^(-1 / alpha)
    log_one <- -inside^alpha
    log_two <- (-1 / alpha - 1) * (log(z[, 1]) + log(z[, 

2]))
    three <- (1 / alpha - 1) * inside^(alpha - 2)
    four <- inside^(2 * alpha - 2)  
    contrib <- log_one + log_two + log(three + four)
    return(sum(contrib))
}



## [1] 0.4954979 0.5182678

## [1] 0.745

all_pairs_lhood <- function(alpha, z) {     
expand.grid(dim1 = seq_len(ncol(z)),                 dim2 = 
seq_len(ncol(z))) |>       filter(dim1 < dim2) |>       
rowwise() |>       mutate(log_pair_lhood = 
log_pair_lhood(alpha, cbind(z[, dim1], z[, dim2]))) |>     
ungroup() |>       summarise(res = sum(log_pair_lhood)) 
|>       pull(res) } alpha_mple <- 
optim(.2, lower = .01, upper = .99, all_pairs_lhood, z = z, method = 
"Brent", hessian = TRUE, control = list(fnscale = -1))

(ci_mple <- alpha_mple$par + c(-1.96, 1.96)*sqrt(-1 / 
alpha_mple$hessian[1, 1]))

## checking coverage
#checking coverage
B <- 200
coverage <- numeric(B)
for(k in seq_len(B)) {
    z_k <- rmvevd(500, dep = .5, d = 5, mar = c(1, 1, 1))
    alpha_mple_k <- optim(.2, lower = .01, upper = .99, 

all_pairs_lhood, z = z_k, method = "Brent", hessian = TRUE, control = 
list(fnscale = -1))

    ci <- alpha_mple_k$par + c(-1.96, 1.96)*sqrt(-1 / 
alpha_mple_k$hessian[1, 1])

    coverage[k] <- as.numeric(ci[1] < alpha & ci[2] > alpha)
}
mean(coverage)



So, it looks like the point estimate from the pairwise likelihood is ok, but we need to be
able to get an appropriate measure of uncertainty.

The proper adjustment is
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1 Introduction

M-estimators are solutions of the vector equation

In the likelihood setting, what is ?

n

∑
i=1

ψ(Yi,θ) = 0.

ψ



7 1 Introduction

Example: Let  be independent, univariate random variables. Is 

an M-estimator?

Y1,… ,Yn θ =
¯̄¯̄
Y =

n

∑
i=1

Yi
1
n
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Example: Consider the mean deviation from the sample mean,

Is this an M-estimator?

θ̂1 =
n

∑
i=1

|Yi −
¯̄¯̄
Y |.

1
n
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2 Basic Approach
M-estimators are solutions of the vector equation

but what are they estimating?

Example (Sample Mean, cont’d): Recall we said  is an M-estimator for

. What is the true parameter?

n

∑
i=1

ψ(Yi,θ) = 0.

θ =
¯̄¯̄
Y =

n

∑
i=1

Yi
1
n

ψ(Yi, θ) = Yi − θ



10

To arrive at the sandwich estimator, assume  and de�ne

Taylor expansion of  around  evaluated at  yields

Y1,… ,Yn
iid
∼ F

Gn(θ) =
n

∑
i=1

ψ(Yi;θ).
1
n

Gn(θ) θ0 θ̂



11 2 Basic Approach

De�ne .A(θ0) = EF [−ψ′(Y1,θ0)]



2.1 Estimators for A,BA,B olds… 12

2.1 Estimators for 

If the data truly come from the assumed parametric family ,

One of the key contributions of M-estimation theory is to point out what happens when the
assumed parametric family is not correct.

We can use empirical estimators of  and :

A,B

f(y;θ)

A B



13 2 Basic Approach

Example (Coef�cient of Variation): Let  be idd from some distribution with �nite
fourth moment. The coef�cient of variation is de�ned at .

De�ne a three dimensional  so that  is de�ned by summing the third component. What
is the vector valued function  which yields an M-estimator for the coef�cient of
variation?

Y1,… ,Yn
θ̂3 = sn/

¯̄¯̄
Y

ψ θ̂3
ψ



2.1 Estimators for A,BA,B olds… 14

What parameter vector is being estimated by the M-estimator?

What are the matrices  and ?A B



15 2 Basic Approach

Write out the asymptotic variance, .V



2.1 Estimators for A,BA,B olds… 16

Assume  are iid from a normal distribution with mean  and standard deviation .
Calculate . Assume you have a same of size  and you get an estimated coef�cient of
variation of . Give the asymptotic % con�dence interval.

Yi 10 1
V3,3 25
0.11 95


