Estimating Equations

Example: Consider the Z = (Z1,...,25)" with cdf

1 1 1 1 1\ @
F(z;a):exp{—<zla+z25+z35+z45+z53) }, z>0,a€(0,1].

Comments:

1. F is max-stable.

2. Z1,...,Z5 are exchangeable.



Let’s consider the likelihood.



How about if we were to just use pairs of points to estimate a?

If we just used (214, 22i),7 = 1,...,n would the likelihood based on the bivariate density be
a good estimator for a?



Let’s try it.

library(evd)

# simulate data with alpha = 0.5

alpha <- 0.5

z <- rmvevd(500, dep = alpha, d = 5, mar = c(1, 1, 1))

## bivariate density
d bivar <- function(z, alpha){
#here "z" is a single observation (ordered pair)
inside <- z[l1]"(-1/alpha) + z[2]"(-1/alpha)
one <- exp(-inside”alpha)
two <- (2[11*2[2])" (-1 / alpha - 1)
three <- (1 / alpha - 1)*inside” (alpha - 2)
four <- inside” (2 * alpha - 2)
one*two* (three + four)

d bivar(c(4, 5), alpha = alpha)

## [1] 0.003650963

dmvevd(c(4,5), dep = alpha, d = 2, mar = ¢(1,1,1))

## [1] 0.003650963

21))

## estimate alpha

log _pair lhood <- function(alpha, z) {
#here "z" is bivariate matrix of observations
inside <- z[, 1]"(-1 / alpha) + z[, 2]"(-1 / alpha)
log one <- -inside”alpha

log two <- (-1 / alpha - 1) * (log(z[, 11) + log(z[,

three <- (1 / alpha - 1) * inside”(alpha - 2)
four <- inside” (2 * alpha - 2)

contrib <- log one + log two + log(three + four)
return(sum(contrib))



all pairs lhood <- function(alpha, z) {
expand.grid(diml = seq len(ncol(z)),

filter(diml < dim2)
mutate(log pair lhood
log pair lhood(alpha, cbind(z[, diml], z[, dim2])))
sum(log pair lhood))

seq len(ncol(z))) |[>
rowwise() |>

ungroup() |>
| > pull(res)

optim(.2, lower = .01, upper = .99, all pairs lhood, z = z, method
list(fnscale
(ci_mple <- alpha mpleS$par + c(-1.96, 1.96)*sqrt(-1 /

"Brent", hessian = TRUE, control

alpha mpleShessian[l, 1]))

## [1] 0.4954979 0.5182678

## checking coverage
#checking coverage

B <- 200

coverage <- numeric(B)
for(k in seq len(B)) {

z k <- rmvevd(500, dep = .5, d = 5, mar = c(1,

alpha mple k <- optim(.2, lower = upper =
all pairs lhood, z = z_k, method = "Brent", hessian = TRUE,
list(fnscale = -1))

summarise(res

ci <- alpha mple k$par + c(-1.96,

alpha mple kShessian[l, 1])

coverage[k] <- as.numeric(ci[l] < alpha & ci[2] > alpha)

}

mean(coverage)

## [1] 0.745

Composite Log Likelihood

Actual Log Likelihood

| >

| >

dim2

alpha mple <-

-1))

1,

1))

.99,

control

1.96)*sqgrt(-1 /
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So, it looks like the point estimate from the pairwise likelihood is ok, but we need to be
able to get an appropriate measure of uncertainty.

The proper adjustment is



1 Introduction

M-estimators are solutions of the vector equation

> ¥(Y:,0)=0.
i=1

In the likelihood setting, what is 4)?



7 1 Introduction

n

Example: Let Y1, ...,Y, be independent, univariate random variables. Is 8 = Y = % Y
i=1
an M-estimator?



Example: Consider the mean deviation from the sample mean,

. 1 <& —
br=—> |Vi-Y].
[t

Is this an M-estimator?



2 Basic Approach

M-estimators are solutions of the vector equation
> (Y, 6) = 0.
i=1

but what are they estimating?

Example (Sample Mean, cont’d): Recall we said 8 =Y = % > Y; is an M-estimator for
i=1

¥(Y;,0) =Y; — 6. What is the true parameter?



. . . iid
To arrive at the sandwich estimator, assume Y7,...,Y, ~ F and define

G.(0) = - w(¥;:0).

Taylor expansion of G,,(0) around 8, evaluated at 6 yields

10



11 2 Basic Approach

Define A(6y) = Ep[—v¢/(Y71, 0))].



2.1 Estimators for A,BA,B olds... 12

2.1 Estimators for A, B

If the data truly come from the assumed parametric family f(y; 0),

One of the key contributions of M-estimation theory is to point out what happens when the
assumed parametric family is not correct.

We can use empirical estimators of A and B:



13 2 Basic Approach

Example (Coefficient of Variation): Let Y7,...,Y, be idd from some distribution with finite

fourth moment. The coefficient of variation is defined at 63 = sn/l7

Define a three dimensional 4 so that 3 is defined by summing the third component. What
is the vector valued function @ which yields an M-estimator for the coefficient of
variation?



2.1 Estimators for A,BA,B olds...

What parameter vector is being estimated by the M-estimator?

What are the matrices A and B?
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15 2 Basic Approach

Write out the asymptotic variance, V.



2.1 Estimators for A,BA,B olds... 16

Assume Y; are iid from a normal distribution with mean 10 and standard deviation 1.
Calculate V3 3. Assume you have a same of size 25 and you get an estimated coefficient of
variation of 0.11. Give the asymptotic 95% confidence interval.



