Empirical Likelihood (EL)

Art Owen (1988, 1990) introduced,

This is nonparametric methodology for creating likelihood-type inference without Ihis is nonparament metuddology for Glati.
Specifying a joint distributionalform for the data. \Rightarrow we can't misspecify!

EL is going to use the fact that the empirical cdf is ^a nonparametric MLE to assess how plausible a value of a parameter is the perform inference. L_{\geqslant} without making distributional assumptions!

1 Mean Case

Suppose \bm{Y}_1,\ldots,\bm{Y}_n are iid with mean $\bm{\mu}$ and covariance-variance $\Sigma.$ For simplicity, say we are interested in estimating μ . $e^{iR^{s}}$ $e^{iR^{s}}$ $e^{iR^{s}}$

1 Mean Case
\nSuppose
$$
Y_1, ..., Y_n
$$
 are iid with mean μ and covariance-variance Σ . For simplicity, say we
\nare interested in estimating μ .
\n*Imagine assigning probabilityes* $p_1, ..., p_n$ *the data* $\sum_{j_1, ..., j_n} y_j$ *where* $0 \le p_i \le 1$ and $\frac{2}{i \le i} p_i \ge 1$.
\n $p_i \mapsto \frac{y_i}{n}$

Unlike parametric likelihood, where we assume a functional form for p_i 's, only constraints (#).

- Define a multinonial likelihood $\hat{\Pi} p_i$ (likelihood for Y_{12-15} using $p_{12-3}p_n$).
- Recall from class (likelihood notes pg $16)$ if you maximize $\mathop{Tr}\limits_{i=1}$ \mathop{P}^i for p_1 ,- p_n the maximizer p₁= : (liclihood notes pg 10) if you maximize $\hat{\pi}$ pi for p10-op
 ρ_2 = ... = ρ_n = $\frac{1}{n}$ of absording and we have also seen the empirical odf $p_i \mapsto \frac{y_i}{1}$
orametric likelihood, ω
multinomial likelihood
nom class (likelihood
 $\int_{0}^{1-p} p_2 - \cdots = p_n$
 $\omega +$
 $F_n(\gamma) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(\gamma)$
words, given the data

$$
F_n(y) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(y_i \le y)
$$
 $y \in \mathbb{R}^3$ is the MLE (pg 23 likelihood nodes).

in other words, given the data the empirical cdf moximizes $\prod_{i=1}^{n} p_i$.

To perform *nonparametric* likelihood inference on μ , we can consider a constrained multinomial likelihood, known as the **Empirical Likelihood function of** μ **:**
(b) the death of the state of the state

\n**nonparametric likelihood inference on**
$$
\mu
$$
, we can consider a constrained all likelihood, known as the Empirical Likelihood function of μ :\n

\n\n
$$
L_n(\mu|Y) = \sup \left\{ \prod_{i=1}^n p_i : p_i \mapsto Y_i, \, \sum_{i=1}^n p_i = 1, \sum_{i=1}^n Y_i p_i = \mu \right\}.
$$
\n

\n\n**1.1** μ **2.2** μ **3.3** μ **4.4** μ **5.4** μ **6.4** μ **7.5** μ **8.6** μ **9.7** μ **10.8** μ **11.6** μ **12.7** μ **13.8** μ **14.8** μ **15.8** μ **16.8** μ **17.8** μ **18.9** μ **19.1** μ **10.1** μ **11.8** μ **12.9** μ **13.9** μ **14.1** μ **15.1** μ **16.1** μ **17.1** μ **18.1** μ **19.1** μ **10.1** μ **11.1** μ **12.1**

Given a parameter value $\underline{\mu}$ and $\underline{\gamma}$, $L_n(\underline{\mu}|\underline{\gamma})$ assesses how plausible the value of $\underline{\mu}$ is.

 $L_{\sf h}\left(\mu\vert \underline{\gamma}\right)_{\hat{\sf i}}$ s the largest multinomo`al likelwed possible for a probability assignment to the data having m ean μ .

The largest possible value of $L_n(\mu|Y)$ is

value of
$$
L_n(\mu|Y)
$$
 is
\n
$$
\prod_{i=1}^{n} \frac{1}{h} \implies \underline{\mu} \text{ would be } \sum_{i=1}^{n} Y_i \cdot \frac{1}{h} \implies \underline{\mu} \text{ would be } \overline{Y}.
$$
\n
$$
\begin{array}{ccc}\n\vdots & \vdots & \vdots & \vdots \\
\downarrow & \downarrow & \downarrow & \downarrow \\
L_n (\overline{Y}, \underline{Y}).\n\end{array}
$$

 $S_{0}=\frac{1}{6}=\frac{1}{6}\sum_{i=1}^{n}Y_{i}$ is a nonparametric ML estimator of μ , i.e. $4e$ El estimator $M = \frac{1}{2}$ of u.

2 Statistical Inference

We can form an EL ratio for μ

ence

\n
$$
R_n(\mu) = \frac{L_n(\mu|Y)}{L_n(\hat{\mu}|Y)}
$$
\n
$$
= \frac{L_n(\mu|Y)}{\prod_{i=1}^{n} \frac{1}{h}}
$$
\n
$$
= \frac{L_n(\mu|Y)}{\prod_{i=1}^{n} \frac{1}{h}}
$$
\n
$$
= \frac{L_n(\mu|Y)}{\mu}
$$
\n
$$
= \frac{2}{\mu} \sum_{i=1}^{n} \frac{L_i}{n} \sum_{i=1}^{n} \frac{1}{i} \sum_{j=1}^{n} \frac{1}{j} \sum_{i=1}^{n} \frac{1}{j} \sum_{j=1}^{n} \frac{1}{j} \sum_{j
$$

Theorem (Wilk's Theorem): If $Y_1,\ldots,Y_n\in\mathbb{R}^q$ are iid with mean μ_0 and covariance- to the familiar?? variance Σ where rank $(\Sigma) = q$, then

$$
-2\log R_n(\boldsymbol{\mu}_0)\stackrel{d}{\to} \chi^2_q \text{ as } n\to\infty.
$$

In other words, for H_o : $M = \mu_o \in \mathbb{R}^q$, if the istrne then $-2\log R_n(\mu_o) \rightarrow \chi_q^2$ as $n \rightarrow \rho_o$. # EL behaves exactly like parametic likelihood for log ratios! #

So if
$$
\chi^2_{1-d,q}
$$
 denotes the 1-d quantile of χ^2_{q} , the an approximate $100(1-\alpha)\%$ confidence region for *μ*:
 $CR = \{ \mu \in \mathbb{R}^4 : -\lambda \log R_n(\mu) \leq \chi^2_{1-d,q} \}$.

$$
b_{\eta}
$$
 inverting the EL test
\n
$$
\beta(\mu_{0} \in CR) = \beta(-2log R_{n}(\mu_{0}) \leq \chi^{2}_{1-d_{1}q}) \xrightarrow{a_{1}n \to p} \beta(\chi^{2}_{\rho} \leq \chi^{2}_{1-d_{1}q}) = 1-d_{1/2}.
$$

For proof of this theorem , see Owen (1988).

3 EL with Estimating Equations

a version bond
(Qin and Lawless, 1994).

Recall:
\nFor
$$
Y_1, Y_2
$$
 did and $\theta \in \mathbb{R}^6$ a parameter q interest
\nEstinding equations link a data point Y_i at parameters through $r \geq b$ functions.
\n
$$
\frac{V}{I}(\frac{Y_i}{J_i} \theta) \text{ which satisfy } E \pm (Y_i \theta) = Qr.
$$
\nFor EL inference on $\theta \in \mathbb{R}^6$, we make an EL function
\n
$$
L_n(\theta) = \lim_{\epsilon \to 0} P_i : p_i \geq 0 \sum_{i=1}^5 p_i - 1 \sum_{i=1}^5 p_i \pm (Y_i \theta) = Qr.
$$
\n
$$
\int_{q_i}^{q_i} \frac{1}{\theta} p_i \cdot \frac{1}{q_i} \cdot \frac{1}{q
$$

given value ↑ $\widetilde{p_i}$'s are placed on $Y(Y_i, \rho)$ to have expectation zero.

regions

the EL function evaluates the plausibility of a given value of θ based on the data.

Then we can get a point estimate, EL ratio, and corresponding CIs, as well as "profile" EL: "profile"

\n
$$
\text{point estimate: } \text{maximize } L_n(\underline{\theta}) \text{ for obtain maximum EL estimator } \hat{\theta}
$$
\n

\n\n $\text{EL ratio: } R_n(\underline{\theta}) = \frac{L_n(\underline{\theta})}{L_n(\hat{\theta})}$ \n (*just the parametric likelihood*)\n

Credible region: $CR = \{ \theta \in \mathbb{R}^k : -\lambda \log R_n(\theta) \leq \chi^2_{1-d,j} \}$ (invert EL ratio).

Credible region:
$$
CR = \{ \theta \in \mathbb{R}^n : -\lambda \log R_n(\theta) \leq \lambda_{1-d, \phi} \}
$$

\n $pprfile EL : \text{suppose } \theta = (Q_{11}Q_{2}) \int \theta_i \in \mathbb{R}^5, Q_2 \in \mathbb{R}^{b-s}$. Given Q_1 define Q_{2, θ_1} where Q_{3, θ_1}

$$
\begin{array}{c}\n 6 \\
 \hline\n \text{Main El result} \\
 \hline\n \text{The value} \\
 \text{Value} \\
 \text{Value} \\
 \end{array}
$$

heorem: Suppose $\bm{Y}_1, \bm{Y}_2, \dots \in \mathbb{R}^q$ are iid with $\text{E} \bm{\psi}(\bm{Y}_1,\bm{\theta}_0) = \bm{0}_r$ and $Var[\psi(Y_1, \theta_0)] = E\psi(Y_1, \theta_0)\psi(Y_1, \theta_0)^\top$ is positive definite, where θ_0 denotes the true parameter value.

Suppose also that $\partial \psi(y, \theta) / \partial \theta$ and $\partial^2 \psi(y, \theta) / \partial \theta \partial \theta^\top$ are continuous in a neighborhood of $\boldsymbol{\theta}_0$ and that, in this neighborhood, $||\boldsymbol{\psi}(\boldsymbol{Y}_1,\boldsymbol{\theta})||^3$, $||\partial \boldsymbol{\psi}(\boldsymbol{y},\boldsymbol{\theta})/\partial \boldsymbol{\theta}||$ and $||\partial^2 \boldsymbol{\psi}(\boldsymbol{y},\boldsymbol{\theta})/\partial \boldsymbol{\theta}\partial \boldsymbol{\theta}^{\top}||$ are bounded by an integrable function $\Psi(Y_1)$.

Finally, suppose the $r \times b$ matrix $D_{\psi} \equiv E \partial \psi(y, \theta) / \partial \theta$ has full column rank b.

Then, as $n \to \infty$,

i.
$$
\sqrt{n}(\hat{\theta} - \theta_0) \stackrel{d}{\rightarrow} N(\mathbf{0}_b, V)
$$
, where $V = (D_{\psi}^T \text{Var}[\psi(\mathbf{Y}_1, \theta_0)] D_{\psi})^{-1}$. El point exists are
asymptically. Normal.

ii. If $r > b$, the asymptotic variance V cannot increase if an estimating function is added. or decrease if an estimating function is dropped.

iii. To test $H_0: \theta = \theta_0$, we may use $-2 \log R_n(\theta_0)$ and when H_0 is true,

To test
$$
H_0: \theta = \theta_0
$$
, we may use $-2 \log R_n(\theta_0)$ and when H_0 is
\n $-2 \log R_n(\theta_0) \rightarrow \chi_{\theta}^2 \neq p$ parameters
\n $\beta_n(\theta_0) = \frac{L_n(\theta_0)}{L_n(\theta)}$
\n $\Rightarrow \text{ confidence to } \frac{1}{L_n(\theta)}$
\n $\Rightarrow \text{ confidence to } \frac{1}{L_n(\theta)}$
\nIf $r > b$, to test $H_0: E\psi(Y_1, \theta) = \mathbf{0}_r$ holds for some θ , we may
\n $\frac{1}{L_n(\theta)}$
\n $\frac{L_n(\theta)}{L_n(\theta)} = -2 \log \frac{L_n(\theta)}{L_n(\theta)} = -2 \log \frac{L_n(\theta)}{L_n(\theta)}$

iv. If $r > b,$ to test $H_0: \mathrm{E}\psi(\boldsymbol{Y}_1,\boldsymbol{\theta}) = \boldsymbol{0}_{r_\text{r}}$ holds for some $\boldsymbol{\theta},$ we may use \Rightarrow confidence regions: $CR = \{ \theta \in \mathbb{R}^b : -2 \log R_n(\underline{\theta}) \leq \chi^2_{b,1-d} \}.$

iv. If
$$
r > b
$$
, to test $H_0: E\psi(Y_1, \theta) = 0_r$ holds for some θ , we may use
\nmore functions
\n
$$
-2 \log \frac{L_n(\hat{\theta})}{n} = -2 \log \left(\frac{L_n(\hat{\theta})}{n} \right)
$$
\n
$$
\frac{\prod_{i=1}^{n} (1/n)}{\sum_{i=1}^{n} (1/n)}
$$
\nand when H_0 is true this quantity converges in distribution to χ^2_{r-b} .

biggest possible value could ever have fo and EL function wh no moment constraints

$$
x_{r-b}^2
$$

$$
\overbrace{a \text{ excess } \text{estim} \text{thy } \text{fund} \text{ } s \text{.}
$$

v. To test the profile assumption $H_0: \theta_1 = \theta_1^0 \in \mathbb{R}^3$, we can use the profile EL ratio and , when H_0 is true, $-2\log R_n(\boldsymbol\theta^0_1) \stackrel{d}{\rightarrow} \chi^2_{\bullet; \atop \mathbb C}$ Asymptoticlly, $-2\log R_n(\theta_o)$ and $-2\log n^n L_n(\hat{\theta}))$ are independent # parameters in L en en 1918.
Le fination