
Empirical Likelihood JEL)
Art Owen (1988, 1990) introduced,

This is nonparametric methodology for creating likelihood-type inference without

specifying a joint distributional form for the data.

=> we can't misspecify !

EL is going to use the fact that the empirical cdf is a nonparametric MLE to

assess how plausible a value of a parameter is to perform inference.

↳ without making distributional assumptions !
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1 Mean Case
Suppose  are iid with mean  and covariance-variance . For simplicity, say we
are interested in estimating .

E18 g gx8

Imagine assigning probabilities P..... On to the data Y ....
%.Thereit andu

PiYi

Unlike parametric likelihood
,

where we assume a functional form for pis , only constraints (*).

Define a multinonial likelihoodpi (likelihood for Ys--using Prc-cPr)

Recall from class (likelihood notes py 10) If you maximize t for pic-yPr the

maximizer
p ,

=

P2 = ... : Pp= Lobaram aclass" and we
have also seen the

empirical odf

↑ (7): = 7) FARE is the MLE (pg 23 likelihood notes) ·

in other words
, given the data the empirical of maximizespi.
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To perform nonparametric likelihood inference on , we can consider a constrained
multinomial likelihood, known as the Empirical Likelihood function of :

The largest possible value of  is

mean of adso (pisPrt
on rIn

function of M

↓ pizo -
u wi -

multinomialEL function likelihood mean constraint on (P1--, Pn)

Given a parameter value M and Y ,
\n)M/1) assesses how plausible the value of Mis.

In (M/1) is
the largest multinomial likehead possible for a probability assignment to the data baring

mean M

>M would be>M would be T.

m

II

L ([
,

2).

So=1 is a norparametic ML estimator of Mi. e
. He EL estimator = T fu
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2 Statistical Inference
We can form an EL ratio for 

Theorem (Wilk’s Theorem): If  are iid with mean  and covariance-
variance  where , then

-
= n"(n)u1])

=

supS pi : pico,Epip
-

i -u) pi = 0

-familiar??

In other words
,

for Ho : M =MoEM
,

if Ho is true then-2logRn(o)-> Fig as my.

* EL behaves exactly like parametic likelihood for log ratios ! *

So if X-ag denotes the 1-1 quantile of Xg ,
then an approximate 100(1-2)% confidence region for m :

CR = &MER : -Lloy Rn(l) = Xing]

by inventing the EL test

P(Mot(R) = p) - 210yR(Mo) =Xing)* P(X = Xing) = 1-2x.

For proof of this theorem
,

see Owen (1988).
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3 EL with Estimating Equations

For EL inference on , we make an EL function

Then we can get a point estimate, EL ratio, and corresponding CIs, as well as “pro�le”
EL:

Jain and Lawless
,

1994).

Recalle :

RE
For 11 .... In iid and EFR a parameter of interest

Estimating equations link a data point I: to parameters through r = b functions.

↑ (PisE) which satify EI(LicE) = Or .

redsmea
andetiny

equation
!

(n(E) = sup[pi : pico,P = 1,PlicE) = @r]
↑ -

given valueof
pi's are placed on PicE) to have expectation Zero.

the El function evaluates the plausibility of a given value of E based on the data.

regions
-

point estimate : maximize Lu(E) to obtain maximum EL estimator &

EL ratio : RnCE)= (just like parametric likelihood

Credible region : CR = SEER : -GlogBu(E)[X] Livet EL ratio).

profile EL :

suppose EF (EE) ,
E,
t

,
EntRBs Given E , define Est

,

where

In (EE2a) = supLn(EsEr)
#2

Then the profile EL ratio for E is Rudt)=
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Theorem: Suppose  are iid with  and
 is positive de�nite, where  denotes the true

parameter value.

Suppose also that  and  are continuous in a neighborhood of
 and that, in this neighborhood, ,  and 

are bounded by an integrable function .

Finally, suppose the  matrix  has full column rank .

Then, as ,

i. , where .

ii. If , the asymptotic variance  cannot increase if an estimating function is
added.

iii. To test , we may use  and when  is true,

iv. If , to test  holds for some , we may use

and when  is true this quantity converges in distribution to .

v. To test the pro�le assumption , we can use the pro�le EL ratio

 and , when  is true, .

EL result

⑭-

EL point estimates are

asymptotically Normal

or decrease if an estimating function is dropped.

En/Eo) =L
Of parameters

=> confidence regions : CR = EEE" : -2log Rn(E) =Ybrn3·

- -
moment condition

more functions
than parameters.

- Glog(n"(n()) .

->
biggest possible value could ever have fo and EL function wh no moment constraints

#excess estimating functions
.

Asymptotically ,
- 2logRn)00) and - 2loy nLn(E) are independento

·
# parametersinE

ena


