4 Computation

Technically, for a given value of $\boldsymbol{\theta}$, define $L_n(\boldsymbol{\theta}|\boldsymbol{Y}) = 0$ if

$$\mathcal{A}_n(oldsymbol{ heta}) = egin{cases} \prod_{i=1}^n p_i : p_i \mapsto oldsymbol{Y}_i, \quad \sum_{i=1}^n p_i = 1, \quad \sum_{i=1}^n oldsymbol{p}_i oldsymbol{\psi}(oldsymbol{Y}_i,oldsymbol{ heta}) = oldsymbol{0}_r \end{bmatrix}$$

is empty. (EL function might not be computable over all possible parameter \mathcal{Q} veloces). If $\mathcal{A}_n(\mathcal{Q})$ is empty, $\mathcal{A}_n(\mathcal{Q}) = \emptyset$, then $\mathcal{L}_n(\mathcal{Q})$ is not defined \Longrightarrow Define $\mathcal{L}_n(\mathcal{Q}) = 0$ (this is the smallest is can be anyways).

If $\mathbf{0}_r$ is in the interior convex hull of $\{\psi(\mathbf{Y}_i, \boldsymbol{\theta})\}_{i=1}^n$, then $\mathcal{A}_n(\boldsymbol{\theta})$ will not be empty. $\Rightarrow \mathcal{L}_n(\underline{\boldsymbol{\theta}}) > \mathbf{0}$. \mathcal{H}_{convex} \mathcal{H}_{convex} is the smallest convex set containing $\Psi(\underline{Y}_i, \underline{\boldsymbol{\theta}}), \ldots, \Psi(\underline{Y}_n, \underline{\boldsymbol{\theta}})$.

E.g.
$$iF \quad \Psi(Y_i, e) = Y_i - \theta \text{ (sample mean case), and}$$

 $g = 1:$
 $Y_i - \theta$

The supremum in the definition of $L_n(\boldsymbol{\theta}|\boldsymbol{Y})$ looks nasty, but the form simplifies if $L_n(\boldsymbol{\theta}|\boldsymbol{Y}) > 0$ for a given $\boldsymbol{\theta} \in \mathbb{R}^b$. To see this, fix $\boldsymbol{\theta}$ and let

$$\int_{1}^{n} \int_{1}^{n} \int_{$$

To maximize $\prod_{i=1}^{n} p_i$ on $\mathcal{B}_n(\boldsymbol{\theta})$ and find (p_1^*, \dots, p_n^*) , use Lagrange multipliers $a \in \mathbb{R}$ and $\boldsymbol{\lambda} \in \mathbb{R}^r$ and maximize

$$f(p_1, \dots, p_n, a, \boldsymbol{\lambda}) = \log \prod_{i=1}^n p_i + a \left(1 - \sum_{i=1}^n p_i \right) - n \boldsymbol{\lambda}^\top \left(\sum_{i=1}^n \boldsymbol{p}_i \boldsymbol{\psi}(\boldsymbol{Y}_i, \boldsymbol{\theta}) \right)$$

over $p_i \in [0, 1], a \in \mathbb{R}$, and $\boldsymbol{\lambda} \in \mathbb{R}^r$.

9

Take derivatives & set to zero:

$$\frac{\partial}{\partial p_{i}} f(p_{1,i-1}, p_{n}, a_{i}\underline{a}) = \frac{1}{p_{i}} - \alpha - n\underline{\lambda}^{T} \Psi(\underline{y}_{i}, \underline{e}) \stackrel{\text{set}}{=} 0 \implies \boxed{ap_{i} = 1 - np_{i} \underline{\lambda}^{T} \Psi(\underline{y}_{i}, \underline{e})}$$

$$\frac{\partial}{\partial a} f(p_{1,i-1}, p_{n}, a_{i}\underline{a}) = 1 - \sum_{i=1}^{n} p_{i} \stackrel{\text{set}}{=} 0 \implies \boxed{ap_{i} = 1 - np_{i} \underline{\lambda}^{T} \Psi(\underline{y}_{i}, \underline{e})}$$

$$\frac{\partial}{\partial a} f(p_{1,i-1}, p_{n}, a_{i}\underline{a}) = 1 - \sum_{i=1}^{n} p_{i} \stackrel{\text{set}}{=} 0 \implies a = n - n\underline{\lambda}^{T} \underline{\hat{\lambda}} p_{i} \Psi(\underline{y}_{i}, \underline{e})$$

$$a = n - n\underline{\lambda}^{T} \underline{\hat{\lambda}} p_{i} \Psi(\underline{y}_{i}, \underline{e})$$

$$a = n - n\underline{\lambda}^{T} \underline{\hat{\lambda}} p_{i} \Psi(\underline{y}_{i}, \underline{e})$$

$$\frac{\partial}{\partial \lambda} f(p_{1,2-1}, p_{n}, a, \lambda) = -n \sum_{i=1}^{n} p_i \psi(\underline{y}_{i}, \underline{\theta}) \stackrel{set}{=} 0 \implies \alpha = n.$$

$$a p_{i} = 1 - n p_{i} \underline{\lambda}^{T} \underline{\Psi}(\underline{y}_{i}, \underline{e})$$

$$p_{i} = \frac{1}{a} - \frac{1}{a} n p_{i} \underline{\lambda}^{T} \underline{\Psi}(\underline{y}_{i}, \underline{e})$$

$$p_{i} = \frac{1}{n} - p_{i} \underline{\lambda}^{T} \underline{\Psi}(\underline{y}_{i}, \underline{e})$$

$$p_{i} (1 + \underline{\lambda}^{T} \underline{\Psi}(\underline{y}_{i}, \underline{e})) = \frac{1}{b}$$

$$\varphi_{i} = \frac{1}{n} \left(\frac{1}{1 + \underline{\lambda}^{\top} \underline{\Psi}(\underline{y}_{i}, \underline{\theta})} \right)$$

 \sim

So, if
$$\underline{\theta} \in H_{\text{convex}}$$
, then

$$L_{n}(\underline{\theta}) = \frac{n}{i!} \frac{1}{n} \left(\frac{1}{1 + \underline{\lambda}^{T} \Psi(\underline{y}_{i}, \underline{\theta})} \right) \quad \text{where} \quad \underline{\lambda} \quad \text{is determined by solving.}$$

$$\underbrace{O}_{i=1} = \sum_{i=1}^{n} p_{i} \Psi(\underline{y}_{i}, \underline{\theta})$$

$$= \frac{1}{n} \sum_{i=1}^{n} \frac{\Psi(\underline{y}_{i}, \underline{\theta})}{1 + \underline{\lambda}^{T} \Psi(\underline{y}_{i}, \underline{\theta})}$$

See Art Owen's website for code / R padeage.