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1 Mean Case
Suppose  are iid with mean  and covariance-variance . For simplicity, say we
are interested in estimating .

Y1, … , Yn μ Σ
μ
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To perform nonparametric likelihood inference on , we can consider a constrained
multinomial likelihood, known as the Empirical Likelihood function of :

The largest possible value of  is

μ

μ

Ln(μ|Y ) = sup{
n

∏
i=1

pi : pi ↦ Yi,
n

∑
i=1

pi = 1,
n

∑
i=1

Yipi = μ} .

Ln(μ|Y )
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2 Statistical Inference
We can form an EL ratio for 

Theorem (Wilk’s Theorem): If  are iid with mean  and covariance-
variance  where , then

μ

Rn(μ) =
Ln(μ|Y )

Ln(μ̂|Y )

Y1, … , Yn ∈ R
q μ0

Σ rank(Σ) = q

−2 logRn(μ0)
d

→ χ2
q  as n → ∞.



5

3 EL with Estimating Equations

For EL inference on , we make an EL function

Then we can get a point estimate, EL ratio, and corresponding CIs, as well as “pro�le”
EL:

θ ∈ R
b
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Theorem: Suppose  are iid with  and
 is positive de�nite, where  denotes the true

parameter value.

Suppose also that  and  are continuous in a neighborhood of
 and that, in this neighborhood, ,  and 

are bounded by an integrable function .

Finally, suppose the  matrix  has full column rank .

Then, as ,

i. , where .

ii. If , the asymptotic variance  cannot increase if an estimating function is
added.

iii. To test , we may use  and when  is true,

iv. If , to test  holds for some , we may use

and when  is true this quantity converges in distribution to .

v. To test the pro�le assumption , we can use the pro�le EL ratio

 and , when  is true, .

Y1, Y2, ⋯ ∈ R
q Eψ(Y1, θ0) = 0r

Var[ψ(Y1, θ0)] = Eψ(Y1, θ0)ψ(Y1, θ0)⊤ θ0

∂ψ(y, θ)/∂θ ∂2ψ(y, θ)/∂θ∂θ⊤

θ0 ||ψ(Y1, θ)||3 ||∂ψ(y, θ)/∂θ|| ||∂2ψ(y, θ)/∂θ∂θ⊤||
Ψ(Y1)

r × b Dψ ≡ E∂ψ(y, θ)/∂θ b

n → ∞

√n(θ̂ − θ0)
d

→ N(0b,V ) V = (D⊤
ψVar[ψ(Y1, θ0)]Dψ)−1

r > b V

H0 : θ = θ0 −2 logRn(θ0) H0

−2 logRn(θ0)
d

→ χ2
b

r > b H0 : Eψ(Y1, θ) = 0r θ

−2 log =
Ln(θ̂)
n

∏
i=1

(1/n)

H0 χ2
r−b

H0 : θ1 = θ0
1 ∈ R

q

−2 logRn(θ0
1) H0 −2 logRn(θ0

1)
d

→ χ2
q
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4 Computation
Technically, for a given value of , de�ne  if

is empty.

If  is in the interior convex hull of , then  will not be empty.

θ Ln(θ|Y ) = 0

An(θ) = {
n

∏
i=1

pi : pi ↦ Yi,
n

∑
i=1

pi = 1,
n

∑
i=1

piψ(Yi, θ) = 0r}

0r {ψ(Yi, θ)}ni=1 An(θ)
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The supremum in the de�nition of  looks nasty, but the form simpli�es if
 for a given . To see this, �x  and let

To maximize  on  and �nd , use Lagrange multipliers  and

 and maximize

over , and .

Ln(θ|Y )

Ln(θ|Y ) > 0 θ ∈ R
b θ

Bn(θ) = {(p1, … , pn) : pi ≥ 0,
n

∑
i=1

pi = 1,
n

∑
i=1

piψ(Yi, θ) = 0r} ⊂ [0, 1]n

n

∏
i=1

pi Bn(θ) (p∗
1, … , p∗

n) a ∈ R

λ ∈ R
r

f(p1, … , pn, a, λ) = log
n

∏
i=1

pi + a(1 −
n

∑
i=1

pi)− nλ⊤ (
n

∑
i=1

piψ(Yi, θ))

pi ∈ [0, 1], a ∈ R λ ∈ R
r
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Take derivatives & set to zero:


