Empirical Likelihood

1 Mean Case

Suppose Y_1, \ldots, Y_n are iid with mean μ and covariance-variance Σ . For simplicity, say we are interested in estimating μ .

To perform *nonparametric* likelihood inference on μ , we can consider a constrained multinomial likelihood, known as the **Empirical Likelihood function of** μ :

$$L_n(oldsymbol{\mu}|oldsymbol{Y}) = \sup\left\{\prod_{i=1}^n p_i: p_i\mapsto oldsymbol{Y}_i, \quad \sum_{i=1}^n p_i = 1, \quad \sum_{i=1}^n oldsymbol{Y}_i p_i = oldsymbol{\mu}
ight\}.$$

The largest possible value of $L_n(\boldsymbol{\mu}|\boldsymbol{Y})$ is

2 Statistical Inference

We can form an EL ratio for μ

 $R_n(oldsymbol{\mu}) = rac{L_n(oldsymbol{\mu}|oldsymbol{Y})}{L_n(\hat{oldsymbol{\mu}}|oldsymbol{Y})}$

Theorem (Wilk's Theorem): If $Y_1, \ldots, Y_n \in \mathbb{R}^q$ are iid with mean μ_0 and covariance-variance Σ where rank $(\Sigma) = q$, then

$$-2\log R_n(oldsymbol{\mu}_0) \stackrel{d}{
ightarrow} \chi^2_q ext{ as } n
ightarrow \infty.$$

3 EL with Estimating Equations

For EL inference on $\boldsymbol{\theta} \in \mathbb{R}^{b}$, we make an EL function

Then we can get a point estimate, EL ratio, and corresponding CIs, as well as "profile" EL:

Theorem: Suppose $\mathbf{Y}_1, \mathbf{Y}_2, \dots \in \mathbb{R}^q$ are iid with $\mathbf{E}\boldsymbol{\psi}(\mathbf{Y}_1, \boldsymbol{\theta}_0) = \mathbf{0}_r$ and $\operatorname{Var}[\boldsymbol{\psi}(\mathbf{Y}_1, \boldsymbol{\theta}_0)] = \mathbf{E}\boldsymbol{\psi}(\mathbf{Y}_1, \boldsymbol{\theta}_0)\boldsymbol{\psi}(\mathbf{Y}_1, \boldsymbol{\theta}_0)^\top$ is positive definite, where $\boldsymbol{\theta}_0$ denotes the true parameter value.

Suppose also that $\partial \psi(\boldsymbol{y}, \boldsymbol{\theta}) / \partial \boldsymbol{\theta}$ and $\partial^2 \psi(\boldsymbol{y}, \boldsymbol{\theta}) / \partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\top}$ are continuous in a neighborhood of $\boldsymbol{\theta}_0$ and that, in this neighborhood, $||\psi(\boldsymbol{Y}_1, \boldsymbol{\theta})||^3$, $||\partial \psi(\boldsymbol{y}, \boldsymbol{\theta}) / \partial \boldsymbol{\theta}||$ and $||\partial^2 \psi(\boldsymbol{y}, \boldsymbol{\theta}) / \partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\top}||$ are bounded by an integrable function $\Psi(\boldsymbol{Y}_1)$.

Finally, suppose the $r \times b$ matrix $D_{\psi} \equiv \mathrm{E} \partial \psi(\boldsymbol{y}, \boldsymbol{\theta}) / \partial \boldsymbol{\theta}$ has full column rank b.

Then, as $n \to \infty$,

i.
$$\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) \stackrel{d}{\rightarrow} N(\boldsymbol{0}_b, V)$$
, where $V = (D_{\boldsymbol{\psi}}^{\top} \mathrm{Var}[\boldsymbol{\psi}(\boldsymbol{Y}_1, \boldsymbol{\theta}_0)] D_{\boldsymbol{\psi}})^{-1}$.

- ii. If r > b, the asymptotic variance V cannot increase if an estimating function is added.
- iii. To test $H_0: \boldsymbol{\theta} = \boldsymbol{\theta}_0$, we may use $-2 \log R_n(\boldsymbol{\theta}_0)$ and when H_0 is true,

$$-2\log R_n(oldsymbol{ heta}_0) \stackrel{d}{
ightarrow} \chi_b^2$$

iv. If r > b, to test $H_0 : \mathbf{E}\psi(\mathbf{Y}_1, \boldsymbol{\theta}) = \mathbf{0}_r$ holds for some $\boldsymbol{\theta}$, we may use

$$-2\lograc{L_n(\widehat{oldsymbol{ heta}})}{\prod\limits_{i=1}^n(1/n)}=$$

and when H_0 is true this quantity converges in distribution to χ^2_{r-b} .

v. To test the profile assumption $H_0: \boldsymbol{\theta}_1 = \boldsymbol{\theta}_1^0 \in \mathbb{R}^q$, we can use the profile EL ratio $-2\log R_n(\boldsymbol{\theta}_1^0)$ and , when H_0 is true, $-2\log R_n(\boldsymbol{\theta}_1^0) \stackrel{d}{\to} \chi_q^2$.

4 Computation

Technically, for a given value of $\boldsymbol{\theta}$, define $L_n(\boldsymbol{\theta}|\boldsymbol{Y}) = 0$ if

$$\mathcal{A}_n(oldsymbol{ heta}) = \left\{ \prod_{i=1}^n p_i: p_i \mapsto oldsymbol{Y}_i, \quad \sum_{i=1}^n p_i = 1, \quad \sum_{i=1}^n oldsymbol{p}_i oldsymbol{\psi}(oldsymbol{Y}_i,oldsymbol{ heta}) = oldsymbol{0}_r
ight\}$$

is empty.

If $\mathbf{0}_r$ is in the interior convex hull of $\{\psi(\mathbf{Y}_i, \boldsymbol{\theta})\}_{i=1}^n$, then $\mathcal{A}_n(\boldsymbol{\theta})$ will not be empty.

4 Computation

The supremum in the definition of $L_n(\boldsymbol{\theta}|\boldsymbol{Y})$ looks nasty, but the form simplifies if $L_n(\boldsymbol{\theta}|\boldsymbol{Y}) > 0$ for a given $\boldsymbol{\theta} \in \mathbb{R}^b$. To see this, fix $\boldsymbol{\theta}$ and let

$$\mathcal{B}_n(oldsymbol{ heta}) = \left\{ (p_1,\ldots,p_n): p_i \geq 0, \quad \sum_{i=1}^n p_i = 1, \quad \sum_{i=1}^n oldsymbol{p}_i oldsymbol{\psi}(oldsymbol{Y}_i,oldsymbol{ heta}) = oldsymbol{0}_r
ight\} \subset [0,1]^n$$

To maximize $\prod_{i=1}^{n} p_i$ on $\mathcal{B}_n(\boldsymbol{\theta})$ and find (p_1^*, \dots, p_n^*) , use Lagrange multipliers $a \in \mathbb{R}$ and $\boldsymbol{\lambda} \in \mathbb{R}^r$ and maximize

$$f(p_1,\ldots,p_n,a,oldsymbol{\lambda}) = \log \prod_{i=1}^n p_i + a \left(1-\sum_{i=1}^n p_i
ight) - noldsymbol{\lambda}^ op \left(\sum_{i=1}^n oldsymbol{p}_ioldsymbol{\psi}(oldsymbol{Y}_i,oldsymbol{ heta})
ight)$$

over $p_i \in [0,1], a \in \mathbb{R},$ and $oldsymbol{\lambda} \in \mathbb{R}^r.$

Take derivatives & set to zero: