## **1** Nonparametric Bootstrap

Let  $Y_1, \ldots, Y_n \sim F$  with pdf f(y). Recall, the empirical cdf is defined as

$$F_{n}(y) = \frac{1}{n} \sum_{j=1}^{n} \mathbb{I}(\underline{Y}_{j} \in \underline{Y}) \quad \underline{Y} \in \mathbb{R}^{d}$$

$$\int \\ MLE \quad of F \quad and \quad as \quad n \to \infty, \quad F \longrightarrow F.$$

Theoretical: Sample  $Y \sim F$ , use  $Y_{1,-}, Y_{n}$  to compute  $F_{n}$ Bootstrap: Sample  $Y^{*} \sim F_{n}$ , use  $Y_{1,-}^{*}, Y_{n}^{*}$  to compute  $F_{n}^{*}$ 



How many possible Bootstap samples? no

Are 
$$Y_{1, \dots, y_{n}}^{*}$$
 independent?  
 $P(Y_{1}^{*}=a, Y_{2}^{*}=b) = \sum_{i=1}^{s} \underline{I}(Y_{i}^{*}=a) + \sum_{i=1}^{n} \underline{I}(Y_{i}^{*}=b) = P(Y_{1}^{*}=a) P(Y_{2}^{*}=b) + \sum_{i=1}^{n} \sum_{i=1}^{n} \frac{P(Y_{1}^{*}=b)}{n} = P(Y_{1}^{*}=a) P(Y_{2}^{*}=b) + \sum_{i=1}^{n} \sum_{i=1}^{n} \frac{P(Y_{1}^{*}=b)}{n} = P(Y_{2}^{*}=b) + \sum_{i=1}^{n} \sum_{i=1}^{n} \frac{P(Y_{2}^{*}=b)}{n} = P(Y_{2}^{*}=b) + \sum_{i=1}^{n} \frac{P(Y_{2}^{$ 

Do we dways wont this? (more later...)

```
# observed data
x <- c(2, 2, 1, 1, 5, 4, 4, 3, 1, 2)
# create 10 bootstrap samples
x_star <- matrix(NA, nrow = length(x), ncol = 10)
for(i in 1:10) {
    x_star[, i] <- sample(x, length(x), replace = TRUE)
}
x_star</pre>
```

|    |       | × <sup>*(1)</sup> |      |      |      |      |      |      |      |      | X*(10) |
|----|-------|-------------------|------|------|------|------|------|------|------|------|--------|
| ## |       | [,1]              | [,2] | [,3] | [,4] | [,5] | [,6] | [,7] | [,8] | [,9] | [,10]  |
| ## | [1,]  | 1                 | 2    | 4    | 1    | 2    | 1    | 2    | 3    | 3    | 4      |
| ## | [2,]  | 4                 | 4    | 1    | 1    | 1    | 2    | 2    | 1    | 2    | 1      |
| ## | [3,]  | 2                 | 2    | 2    | 4    | 5    | 4    | 4    | 5    | 1    | 4      |
| ## | [4,]  | 4                 | 4    | 2    | 5    | 2    | 4    | 5    | 5    | 1    | 3      |
| ## | [5,]  | 2                 | 1    | 5    | 1    | 3    | 2    | 4    | 2    | 4    | 4      |
| ## | [6,]  | 4                 | 4    | 2    | 1    | 4    | 4    | 4    | 3    | 1    | 2      |
| ## | [7,]  | 1                 | 1    | 2    | 1    | 2    | 1    | 2    | 2    | 3    | 1      |
| ## | [8,]  | 4                 | 4    | 1    | 3    | 3    | 3    | 5    | 1    | 2    | 4      |
| ## | [9,]  | 4                 | 1    | 2    | 3    | 2    | 1    | 2    | 1    | 4    | 2      |
| ## | [10,] | 3                 | 4    | 5    | 1    | 5    | 4    | 5    | 2    | 4    | 1      |

# compare mean of the same to the means of the bootstrap samples mean(x)

## [1] 2.5

colMeans(x\_star)

*##* [1] 2.9 2.7 2.6 2.1 2.9 2.6 3.5 2.5 2.6

```
ggplot() +
geom_histogram(aes(colMeans(x_star)), binwidth = .05) +
geom_vline(aes(xintercept = mean(x)), lty = 2, colour = "red") +
xlab("Sampling distribution of the mean via bootstrapping")
```



## 1.1 Algorithm

**Goal:** estimate the sampling distribution of a statistic based on observed data  $\mathfrak{F}_1, \ldots, \mathfrak{F}_n$ . Let  $\theta$  be the parameter of interest and  $\hat{\theta}$  be an estimator of  $\theta$ . Then,

For 
$$b=1,...,B$$
  
(1) Sample  $\mathcal{Y}^{*(w)} = (\mathcal{Y}^{*(5)}_{i},...,\mathcal{Y}^{*(b)}_{n})$  by sampling  $w/$  replacement from  $(\mathcal{Y}_{1}),...,\mathcal{Y}_{n})$   
(i.e. sample from  $F_{n}$ )  
(i.e. sample from  $F_{n}$ )  
(i.e. sample from  $F_{n}$ )  
 $\mathcal{X}_{estimate}$  of  $\theta$  based on  $b^{m}$  bootstrap sample.  
Using  $\hat{\theta}^{(0)}_{i},...,\hat{\theta}^{(0)}_{i}$  we can

- cotimode the sampling dan of 
$$\hat{\Theta}_n$$
 (via histogram, density estimator)  
- estimate SE of  $\hat{\Theta}$   
- estimate bias of  $\hat{\Theta}$   
- estimate a CI (many brays).

etc.

## 1.2 Justification for iid data

Suppose  $Y_1, \ldots, Y_n$  are iid with  $\mathrm{E} Y_1 = \mu \in \mathbb{R}$ ,  $\mathrm{Var}(Y_1) = \sigma^2 \in (0, \infty)$ . Let's approximate the distribution of  $T_n = \sqrt{n}(\bar{Y}_n - \mu)$  via the bootstrap.

**Theorem:** If  $Y_1, Y_2, \ldots$  are iid with  $Var(Y_1) = \sigma^2 \in (0, \infty)$ , then  $\sup |P(T_n \leq y) - P_*(T_n^* \leq y)| \equiv \Delta_n \to 0 \text{ as } n \to \infty \text{ almost surely (a.s).}$  $y \in \mathbb{\bar{R}}$ 

Given Y= Ex1,..., Yn } draw Y, ...., Yn bootstrap sample. Then, bootstrap probability The bootstrap version of our statistic  $T_n$  is  $T_n^* = J_n \left( \overline{y}_n^* - E_* y_i^* \right) = J_n \left( \overline{y}_n^* - \overline{y}_n \right)$ bootstrap where  $E_{\mathbf{x}}(Y_i^*) = E[Y_i^*|Y] = \sum_{i=1}^{n} \frac{1}{n}Y_i = \overline{Y_n}$  dso  $E_{\mathbf{x}}(\overline{Y_n^*}) = E_{\mathbf{x}}(\frac{1}{n}\sum_{i=1}^{n}Y_i^*) = \frac{1}{n}\sum_{i=1}^{n}E_{\mathbf{x}}Y_i^* = \overline{Y_n}$ Also  $P_{\mathbf{x}}(T_n^* \leq y) = P(T_n^* \leq y|Y)$  approximates  $P(T_n \leq y)$  yet (Herein). Samples.  $\Rightarrow$  use simulation. The proof of this theorem requires two facts:

i. (Berry-Esseen Lemma) Let  $Y_1, \ldots, Y_n$  be independent with  $\mathbf{E}Y_i = 0$  and  $\mathbf{E}|Y_i|^3 < \infty$  for  $i = 1, \ldots, n$ . Let  $\sigma_n^2 = n \operatorname{Var}(\bar{Y}_n) = n^{-1} \sum_{i=1}^n \mathbf{E}Y_i^2 > 0$ . Then,

$$\sup_{y\in\mathbb{R}}\left|P\left(\frac{\sqrt{n}\bar{Y_n}}{\sigma_n}\leq y\right)-\Phi(y)\right|=\sup_{x\in\mathbb{R}}\left|P\left(\sqrt{n}\bar{Y_n}\leq x\right)-\Phi\left(\frac{x}{\sigma_n}\right)\right|\leq \frac{2.75}{n^{3/2}\sigma_n^3}\sum_{i=1}^n\mathrm{E}|Y_i|^3.$$

M-Z SLLN

ii. (Marcinkiewicz-Zygmund SLLN) Let  $X_i$  be a sequence of iid random variables with  $\mathrm{E}|X_i|^p < \infty ext{ for } p \in (0,2). ext{ Then, for } S_n = \sum_{i=1}^n X_i,$ 

$$rac{1}{n^{1/p}}(S_n-nc) o 0 ext{ as } n o \infty ext{ almost surely (*)}$$

 $\underbrace{\text{for any } c}_{\in} \mathbb{R} \text{ if } p \in (0,1) \text{ and for } c = \mathrm{E} X_1 \text{ if } p \in [1,2). \text{ If } (*) \text{ holds for some } c \in \mathbb{R},$ then  $\mathbf{E}|X_1|^p < \infty$ .

Specifically, we will use that if 
$$\xi Y_i$$
 are ind  $w = EY_i^2 < \infty$ , then  

$$\frac{1}{n^{3/2}} \sum_{i=1}^{n} |Y_i|^3 \longrightarrow 0 \quad \text{as} \quad n \gg \infty \quad a.s.$$
We have  $X_i = |Y_i|^3$  because  $E[X_i]^p = E[Y_i]^{3p} < \infty$  for  $p = 2/3$ , we may take  $C = 0$ .

1.2 Justification for iid data

$$\begin{split} & \bigvee_{A_{n}} \longrightarrow 0 \text{ by CLT since } Y_{1,1-1}Y_{n} \text{ ind } F_{1}^{2}Z_{00}. \\ & \text{Note that} \\ & G_{n\times}^{2} \equiv n \operatorname{Var}_{\star} \left(\overline{Y}_{n}^{\star}\right) = n \operatorname{Var}_{\star} \left(\frac{1}{n} \sum_{i=1}^{n} y_{i}^{\star}\right) = \frac{n}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}_{\star} \left(y_{i}^{\star}\right) = \operatorname{Var}_{\star} Y_{i}^{\star} \\ & = E_{\star} \left[ \left(Y_{i}^{\star}\right)^{2} \right] - \left[ E_{\star} Y_{i}^{\star} \right]^{2} \quad \text{where } Y_{i}^{\star} = \begin{cases} Y, & u.p. Y_{n} \\ Y_{n} & u.p. Y_{n} \end{cases} \\ & = \frac{1}{n} \sum_{i=1}^{n} Y_{i}^{2} - \left(\overline{Y}_{n}\right)^{2} \end{split}$$

So 
$$G_{n+}^2 \rightarrow EY_1^2 - (EY_1)^2 = G^2$$
 as  $n \rightarrow \infty$  w.p. 1 by SLLN since  $EY_1^2 < \infty$ .

By the Berry Esseen Lemma on 
$$T_n^* = \sqrt{n} \left( \overline{y}_n^* - E_* y_i^* \right)$$
 and  $|a-b| \leq 2 \max \{ |a|, |b| \}$   
 $\Rightarrow |a-b|^3 \leq 8 \max \{ |a|^3, |b|^3 \}$   
 $\leq 8 \left( |a|^3 + |b|^3 \right)$ 

$$\begin{split} \sup_{\substack{y \in \mathbb{R} \\ y \in \mathbb{R} \\ y \in \mathbb{R} \\ y \in \mathbb{R} \\ x = \frac{1}{p_{n}} - \frac{1}{p_{n}} \left( \frac{1}{g_{nx}} \right) - \frac{1}{p_{n}} \left( \frac{1}{g_{nx}} \right) \right| &\leq \frac{2 \cdot 75}{n^{3/n} \sigma_{nx}^{3}} = n \frac{1}{p_{x}} \left| \frac{1}{y_{1}} - \frac{1}{E_{x}} \right| \frac{y_{1}}{y_{1}} - \frac{1}{E_{x}} \left| \frac{y_{1}}{y_{1}} - \frac{1}{E_{x}} \right|^{2}}{\sum_{\substack{y \in \mathbb{R} \\ y \neq n}} \left| \frac{1}{p_{n}} \left( \frac{1}{y_{n}} - \frac{1}{E_{x}} \right) \right|^{2}}{\left( n \left( \frac{y_{n}}{x} - \frac{1}{E_{x}} \right)^{2}} \right) \right|^{2}} \\ &= \frac{2 \cdot 75}{n^{3/2}} \frac{1}{\sigma_{nx}^{3}} - \frac{1}{n} \sum_{\substack{z \in \mathbb{I} \\ z \in \mathbb{I}}} \left| \frac{y_{1}}{y_{1}} - \frac{y_{n}}{y_{n}} \right|^{3}}{\left( \frac{1}{p_{n}} \right)^{3}} \\ &\leq \frac{2 \cdot 75}{n^{3/2}} \frac{1}{\sigma_{nx}^{3}} - \frac{1}{n} \sum_{\substack{z \in \mathbb{I} \\ z \in \mathbb{I}}} \left| \frac{y_{1}}{y_{1}} - \frac{y_{n}}{y_{n}} \right|^{2}}{\left( \frac{1}{p_{n}} \right)^{3}} \\ &= \frac{2 \cdot 75}{n^{3/2}} \frac{1}{\sigma_{nx}^{3}} - \frac{5}{n} \sum_{\substack{z \in \mathbb{I} \\ z \in \mathbb{I}}} \left( \frac{1}{y_{1}} - \frac{y_{1}}{y_{1}} \right) \\ &= \frac{8 \left( \frac{2}{n \sqrt{2}} \right)}{\left( \frac{1}{\sigma_{nx}} \right)^{2}} \frac{1}{n^{3/2}} \sum_{\substack{z \in \mathbb{I} \\ y \in \mathbb{I}}} \frac{y_{1}}{y_{1}} \frac{1}{p_{n}} \sum_{\substack{z \in \mathbb{I} \\ y \neq 1}} \frac{1}{p_{n}} \sum_{\substack{z \in \mathbb{I} \\ y \in \mathbb{I}}} \frac{y_{n}}{y_{n}} \sum_{\substack{z \in \mathbb{I} \\ y \neq 1}} \frac{y_{n}}{y_{n}} \frac{y_{n}}{y_{n}} \sum_{\substack{z \in \mathbb{I} \\ y \neq 1}} \sum_{\substack{z \in \mathbb{I} \\ y \neq 1}} \frac{y_{n}}{y_{n}} \sum_{\substack{z \in \mathbb{I} \\ y \neq 1}} \sum_{\substack{z \in \mathbb{I} \\ y \neq 1}} \frac{y_{n}}{y_{n}} \sum_{\substack{z \in \mathbb{I} \\ y \neq 1}} \sum_{\substack{z \in$$