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1 Nonparametric Bootstrap
Let  with pdf . Recall, the empirical cdf is de�ned as

Theoretical:

Bootstrap:

The idea behind the nonparametric bootstrap is to sample many data sets from ,
which can be achieved by resampling from the data with replacement.
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Do we always want this ?

(more later...)
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##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]    1    2    4    1    2    1    2    3    3     4
##  [2,]    4    4    1    1    1    2    2    1    2     1
##  [3,]    2    2    2    4    5    4    4    5    1     4
##  [4,]    4    4    2    5    2    4    5    5    1     3
##  [5,]    2    1    5    1    3    2    4    2    4     4
##  [6,]    4    4    2    1    4    4    4    3    1     2
##  [7,]    1    1    2    1    2    1    2    2    3     1
##  [8,]    4    4    1    3    3    3    5    1    2     4
##  [9,]    4    1    2    3    2    1    2    1    4     2
## [10,]    3    4    5    1    5    4    5    2    4     1

## [1] 2.5

##  [1] 2.9 2.7 2.6 2.1 2.9 2.6 3.5 2.5 2.5 2.6

# observed data
x <- c(2, 2, 1, 1, 5, 4, 4, 3, 1, 2)

# create 10 bootstrap samples
x_star <- matrix(NA, nrow = length(x), ncol = 10)
for(i in 1:10) {
  x_star[, i] <- sample(x, length(x), replace = TRUE)
}
x_star

# compare mean of the same to the means of the bootstrap samples
mean(x)

colMeans(x_star)

ggplot() + 
  geom_histogram(aes(colMeans(x_star)), binwidth = .05) +
  geom_vline(aes(xintercept = mean(x)), lty = 2, colour = "red") +
  xlab("Sampling distribution of the mean via bootstrapping")
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1.1 Algorithm

Goal: estimate the sampling distribution of a statistic based on observed data .

Let  be the parameter of interest and  be an estimator of . Then,

x1, … ,xn

θ θ̂ θ

↳
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for b = 1, . .
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① Sample
* (b)

= (y(y)) by sampling W replacement from byi
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e . Sample from Fn)

② (3)= (y+())
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estimate of o based on bt bootstrap sample.

UsingC we can

- estimate the sampling doo ofn (via histogram, density estimator

- estimate St of
- estimate biasof

- estimate a CI (many waye) .

etc.
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1.2 Justi�cation for iid data

Suppose  are iid with , . Let’s approximate
the distribution of  via the bootstrap.

Theorem: If  are iid with , then
 as  almost surely (a.s).

The proof of this theorem requires two facts:

i. (Berry-Esseen Lemma) Let  be independent with  and 
for . Let . Then,

ii. (Marcinkiewicz-Zygmund SLLN) Let  be a sequence of iid random variables with
 for . Then, for ,

for any  if  and for  if . If  holds for some ,
then .

Y1, … ,Yn EY1 = μ ∈ R Var(Y1) = σ2 ∈ (0, ∞)
Tn = √n(Ȳ n − μ)

Y1,Y2, … Var(Y1) = σ2 ∈ (0, ∞)
sup
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bootstrap sample .

Then,

Py(yy = y; ) = P(y = Yi(2) = 1 in

bootstrap
probability
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↑
standard da

M-Z SLLN

=
-

specifically ,
we will use that if 34:] are ind of EY? co , then

-Mil -0 as n.

lating X:= 1Yil" because EIX10 = ElY/P29 for p
= 2/3

,

we may take

C= 0.



1.2 Justi�cation for iid data 6

Pot:
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Since El. ) iscontinuous .
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