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1.3 Properties of Estimators

We can use the bootstrap to estimate different properties of estimators.

1.3.1 Standard Error

Recall . We can get a bootstrap estimate of the standard error:

1.3.2 Bias

Recall . We can get a bootstrap estimate of the bias:

Overall, we seek statistics with small se and small bias.

se(θ̂) =√V ar(θ̂)

bias(θ̂) = E[θ̂ − θ] = E[θ̂ ] − θ

se() =F_

bias() = E *
- = =

+ ((y() - 5)

↑ ↑
Bb=

Complea computedfroma
data

bootstrap
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MSE = Variance + bias?

=

E((8 --)]
.

=>Bootstrap procedure to estimate MSE:

① Compute E from origued sample = (Y
. -Yal

② Take a number (B) of bootstrap samples of sizen foundatay
* (1) y

* I

⑤Compute*1)
estimate of o obtained from tes sample.

④ M= E*-E
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1.4 Sample Size and # Bootstrap Samples

If  is too small, or sample isn’t representative of the population,

Guidelines for  –

Best approach –

n = sample size & B = # bootstap samples

n

B

bootstrap procedure will be poor no matter how large B is.

By 1000 for set bias

By 2000 for CI's (depends on 2 : small < => &B).

Repeat bootstop w/ different seeds. If estimates very
difect, &B.
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Your Turn
In this example, we explore bootstrapping in the rare case where we know the values for
the entire population. If you have all the data from the population, you don’t need to
bootstrap (or really, inference). It is useful to learn about bootstrapping by comparing to
the truth in this example.

In the package bootstrap is contained the average LSAT and GPA for admission to the
population of  USA Law schools (an old data set – there are now over  law schools).
This package also contains a random sample of size  from this dataset.

##   LSAT  GPA
## 1  576 3.39
## 2  635 3.30
## 3  558 2.81
## 4  578 3.03
## 5  666 3.44
## 6  580 3.07

82 200
n = 15

library(bootstrap)

head(law)

ggplot() +
  geom_point(aes(LSAT, GPA), data = law) +
  geom_point(aes(LSAT, GPA), data = law82, pch = 1)

↑ random
sample

n
= 15

~Full data set
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We will estimate the correlation  between these two variables and use
a bootstrap to estimate the sample distribution of .

## [1] 0.7763745

## [1] 0.7599979

1. Plot the sample distribution of . Add vertical lines for the true value  and the
sample estimate .

2. Estimate .

3. Estimate the bias of 

θ = ρ(LSAT, GPA)
θ̂

# sample correlation
cor(law$LSAT, law$GPA)

# population correlation
cor(law82$LSAT, law82$GPA)

# set up the bootstrap
B <- 200
n <- nrow(law)
r <- numeric(B) # storage

for(b in B) {
  ## Your Turn: Do the bootstrap!
}

θ̂ θ

θ̂

sd(θ̂)

θ̂

correlation
-

En=15

8

↓
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1.5 Bootstrap CIs

We will look at �ve different ways to create con�dence intervals using the boostrap and
discuss which to use when.

1. Percentile Bootstrap CI

2. Basic Bootstrap CI

3. Standard Normal Bootstrap CI

4. Bootstrap 

5. Accelerated Bias-Corrected (BCa)

Key ideas:

t

T

(adjusted for bias)

nummu

I studentized) .

-

y
adjusted for skewness

①When you say and "bootstrap CI" you need to say which one.

② For now) whatever you are bootstrapping needsto beiid.

③ bootstrapping is an attempt to simulate replication (think about interpretation of CI).
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1.5.1 Percentile Bootstrap CI

Let  be bootstrap replicates and let  be the  quantile of .

Then, the  Percentile Bootstrap CI for  is

In R, if bootstrap.reps = c( ), the percentile CI is

Assumptions/usage

θ̂
(1)

, … , θ̂
(B)

θ̂α/2 α/2 θ̂
(1)

, … , θ̂
(B)

100(1 − α)% θ

θ̂
(1)

, … , θ̂
(B)

quantile(bootstrap.reps, c(alpha/2, 1 - alpha/2))

(Probably the one you're thinking of).

↳
two-sided

(n2, -212)

·
rector of bootstrap samples of El!

- Widely used because simple to implement and explain.

->ranback : (I's usually too narrow , leading to lower coverage .

-> can use when little bins and skewness in bootstrap don.

dan Hanationofa.
- ↓ #() = = (i)-2) for-tricationfor

of an increasing treformation g St
- P(g() -g()=

OC44 .

= "bootstrap" World : ↑
*

[g(**) - g() = x] = H(x) (*) .

suppose o is known. Then P(q(g(E) -x)= = #(2) · The at his prob - egad to 1-2.

= 1 - x => x = H'(l-a) .

P[g(g() = #) -a)) =) = 1-2 =) If g is known this gives a one-sided CI wh
coverage probability 1-9.

Cupper-bound=>

(g(g(E) - +(1-x)) ,
e) version similar).

-

goal : Show g(g(E) - #'(-x)) is estimated by the left endpoint of percente bootstrap intere
,
Es

x = p
*(*

= F) =
*

(g(**) =g( Ea))
=

p
* (g( *) - g(E) = g(n) - g(E)) = H(g(n) - g() from () -

Note : we do not

=> H() = g(a)- g(t) = g( +() + g()) Es need to know g
to

calculate Ex

Fg()- #(l-x) same lower bourd as above !


