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1.5.2 Basic Bootstrap CI

The  Basic Bootstrap CI for  is

Assumptions/usage

100(1 − α)% θ

(corrects for bias).
based on residuals.
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Why?
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&/z Gale- bootstrap

· corrects for bias
,
but slightly harderto explain than percentive.

· Not transformation invariant.
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1.5.3 Bootstrap  CI (Studentized Bootstrap)

Even if the distribution of  is Normal and  is unbiased for , the Normal distribution is
not exactly correct for .

Additionally, the distribution of  is unknown.

 The bootstrap  interval does not use a Student  distribution as the reference
distribuion, instead we estimate the distribution of a “t type” statistic by resampling.

The  Boostrap  CI is

Overview

To estimate the “t style distribution” for ,
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Consider=

because we need to estimate secEl .

=> ta ? No

There SECE) = Ed( **(1) E*(B)
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-Eny

based onbrottP
-
↳

(E-seCE ,E .

↑ ⑨

estimatefana quartileofeen of our

"t-type" statistic .

t-type statistic : th=...
we

= bootstrap estimate of se( **1)Based on the first bootstrap sample?? Double bootstrap !

1 . Compute
3

, get quartiles E ,
2

2. For b = 1, . . . B

(a) Samplew/ replacement
4 . Compute CI.

(b) = (y() , -.,y))
(b) Compute 8 *(3)

(c) for each r = 1 -->
R
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y
(b) (r)

= (y ,(b)() , yb)()
-

(ii) Compute **
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(d) Compute Se(E*1) = >d) filE
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Assumptions/usage

=> computationally intensive.

- Not doing anything for bias/skewness.
=> NeedE independent of Se (8).

This idea is based on "pivot quartities" = a function of observations and paameters whose

probability don doesn't depend on the parameter.

E
. g . Em ~  m intere !

This can help as to obtain a bootstrap CI for M.

You could create other pirot quantities to exted viabootstrap, e
. g.

If wilN(m
,(2) A

=> A ) would be a 93% Cf.

Bootstrap version does not assume Y.N(M
,

62). Now need to estimate XP-type grative using the bootstrap
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1.5.4 BCa CIs

Modi�ed version of percentile intervals that adjusts for bias of estimator and skewness of
the sampling distribution.

This method automatically selects a transformation so that the normality assumption
holds.

Idea:

correct for skew.

-
"bids-corrected accelerated "

Assume there exists a monitorically increasing function o
and constants a and b sit.

U=Y bN(0
,
D where Iago

By the bootstrap principle

u=g() +N

=> For any quartile of a standard Normal don,

< = P
*

[u* = z]

=pE
=

p[(E-Cagl)
The a quartile from the bootstrap don of E*, denoted Ea

,
is observable from BS don.

=> j(g(f) + (zx -b)(1 + ag())) = E

To use this
,

consider U: 1-c = P(U7z2)

Pg()+ag
Notice similarity to above .

=> If we could find B such thatE = Ep-b then the bootstrap principle can be appliedo

↳enda conclude o < Ep will be an appropriate 1-5 upper CI limit.

=> z= B=-
M

=> O find a
,
b ,compute B , 8 Fra Bth quartile of empiri dow of*

quarteof NolPraction of obse from bootstrap doo St
.
***. Since o is monotone

,
this is the same fractions of Ess.ggC

=> P(Z < b) = powhere ZvN(0 , 1) gives us a way to estimate b &If the bootstrap don has as its median
,

then b=0).

=> b corrects for bins.

9 : Let Si = &Yp-> York bits-sY] and It Evident the estimate of o based on Si A basea
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The BCa method uses bootstrapping to estimate the bias and skewness then modi�es
which percentiles are chosen to get the appropriate con�dence limits for a given data set.

In summary,

If a= 0
, don't adjust for skewness => BC interal.

BCa is like the percentive Bootstrap CI
,
but instead of JExiz

, Erase) , choose

better quartiles to accourt for bias and skarness
.

Has better creage then percentile method in empirical studies
,

but nader to explain.
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Your Turn
We will consider a telephone repair example from Hesterberg (2014). Verizon has repair
times, with two groups, CLEC and ILEC, customers of the “Competitive” and
“Incumbent” local exchange carrier.

##    Time Group
## 1 17.50  ILEC
## 2  2.40  ILEC
## 3  0.00  ILEC
## 4  0.65  ILEC
## 5 22.23  ILEC
## 6  1.20  ILEC

Group mean sd min max
CLEC 16.509130 19.50358 0 96.32
ILEC 8.411611 14.69004 0 191.60

library(resample) # package containing the data

data(Verizon)
head(Verizon)

Verizon |>
  group_by(Group) |>
  summarize(mean = mean(Time), sd = sd(Time), min = min(Time), max = 

max(Time)) |>
  kable()

ggplot(Verizon) +
  geom_histogram(aes(Time)) +
  facet_wrap(.~Group, scales = "free")

H

23

1664
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1.6 Bootstrapping CIs

There are many bootstrapping packages in R, we will use the boot package. The function
boot generates  resamples of the data and computes the desired statistic(s) for each
sample. This function requires 3 arguments:

1. data = the data from the original sample (data.frame or matrix).
2. statistic = a function to compute the statistic from the data where the �rst

argument is the data and the second argument is the indices of the obervations in the
boostrap sample.

3.  = the number of bootstrap replicates.

ggplot(Verizon) +
  geom_boxplot(aes(Group, Time))

R

R

a youcouldeour
own
.

-
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If we want to get Bootstrap CIs, we can use the boot.ci function to generate the
different nonparametric bootstrap con�dence intervals.

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 2000 bootstrap replicates
## 
## CALL : 
## boot.ci(boot.out = boot.ilec, conf = 0.95, type = c("perc", 
"basic", 
##     "bca"))
## 
## Intervals : 
## Level      Basic              Percentile            BCa          
## 95%   ( 7.733,  9.110 )   ( 7.714,  9.091 )   ( 7.755,  9.125 )  
## Calculations and Intervals on Original Scale

library(boot) # package containing the bootstrap function

mean_func <- function(x, idx) {
  mean(x[idx])
}

ilec_times <- Verizon[Verizon$Group == "ILEC",]$Time
boot.ilec <- boot(ilec_times, mean_func, 2000)

plot(boot.ilec)

boot.ci(boot.ilec, conf = .95, type = c("perc", "basic", "bca"))-
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##     2.5%    97.5% 
## 7.714075 9.084725

##    97.5%     2.5% 
## 7.738496 9.109147

To get the studentized bootstrap CI, we need our statistic function to also return the
variance of .

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 2000 bootstrap replicates
## 
## CALL : 
## boot.ci(boot.out = boot.ilec_2, conf = 0.95, type = "stud")
## 
## Intervals : 
## Level    Studentized     
## 95%   ( 7.728,  9.183 )  
## Calculations and Intervals on Original Scale

Which CI should we use?

## we can do some of these on our own
## percentile
quantile(boot.ilec$t, c(.025, .975))

## basic
2*mean(ilec_times) - quantile(boot.ilec$t, c(.975, .025))

θ̂

mean_var_func <- function(x, idx) {
  c(mean(x[idx]), var(x[idx])/length(idx))
}

boot.ilec_2 <- boot(ilec_times, mean_var_func, 2000)
boot.ci(boot.ilec_2, conf = .95, type = "stud")


