Your Turn

head(Puromycin)

This data set is the Puromycin data in R. The goal is to create a regression model about the rate of an enzymatic reaction as a function of the substrate concentration.

```
## conc rate state
## 1 0.02 76 treated
## 2 0.02 47 treated
## 3 0.06 97 treated
## 4 0.06 107 treated
## 5 0.11 123 treated
## 6 0.11 139 treated
```

```
dim(Puromycin)
```

[1] 23 3

```
ggplot(Puromycin) +
  geom_point(aes(conc, rate))
```

```
ggplot(Puromycin) +
  geom_point(aes(log(conc), (rate)))
```


2.1.4 Standard regression

```
m0 <- lm(rate ~ conc, data = Puromycin)
plot(m0)
summary(m0)</pre>
```

```
##
## Call:
## lm(formula = rate ~ conc, data = Puromycin)
##
## Residuals:
##
      Min
               10 Median
                               3Q
                                      Max
## -49.861 -15.247 -2.861 15.686 48.054
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 93.92 8.00 11.74 1.09e-10 ***
## conc
               105.40 16.92 6.23 3.53e-06 ***
## ___
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 28.82 on 21 degrees of freedom
## Multiple R-squared: 0.6489, Adjusted R-squared: 0.6322
## F-statistic: 38.81 on 1 and 21 DF, p-value: 3.526e-06
confint(m0)
##
                 2.5 %
                         97.5 %
## (Intercept) 77.28643 110.5607
## conc
             70.21281 140.5832
m1 <- lm(rate ~ log(conc), data = Puromycin)</pre>
plot(m1)
summary(m1)
##
## Call:
```

lm(formula = rate ~ log(conc), data = Puromycin)

```
##
## Residuals:
              1Q Median 3Q
##
      Min
                                    Max
## -33.250 -12.753 0.327 12.969 30.166
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 190.085 6.332 30.02 < 2e-16 ***
## log(conc)
              33.203
                          2.739 12.12 6.04e-11 ***
## ___
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17.2 on 21 degrees of freedom
## Multiple R-squared: 0.875, Adjusted R-squared: 0.869
## F-statistic: 146.9 on 1 and 21 DF, p-value: 6.039e-11
```

confint(m1)

 ##
 2.5 % 97.5 %

 ## (Intercept) 176.91810 203.2527

 ## log(conc)
 27.50665 38.8987

 # Fisher Infernation.

2.1.5 Paired bootstrap

```
# Your turn
library(boot)
reg_func <- function(dat, idx) {
    # write a regression function that returns fitted beta
}
    gr write your our is fre.
# use the boot function to get the bootstrap samples
# examing the bootstrap sampling distribution, make histograms
# get confidence intervals for beta_0 and beta_1 using boot.ci
```

2.1.6 Bootstrapping the residuals

```
# Your turn
library(boot)
reg_func_2 <- function(dat, idx) {
    # write a regression function that returns fitted beta
    # from fitting a y that is created from the residuals
}
# use the boot function to get the bootstrap samples
# examing the bootstrap sampling distribution, make histograms
# get confidence intervals for beta_0 and beta_1 using boot.ci
```

3 Bootstrapping Dependent Data

Suppose we have dependent data $\boldsymbol{y} = (y_1, \ldots, y_n)$ generated from some unknown distribution $F = F_{\boldsymbol{Y}} = F_{(Y_1, \ldots, Y_n)}$.

No longer assuming Y, ,..., Y, independent. Les could be time serves, spatial, network, etc.

Goal:

Challenge:

Since Yi's are dependent it is inappropriate to use The iid bootstrap.
Bootstrapped samples would no longer reproduce the data genoting process.
(and sampling independenting from
$$\hat{F}_n$$
 no longer mimics drawing original sample from F).

We will consider 2 approaches

Model -based (parametric).
 Block bootstrap (nonperametric).

Example 3.1 Suppose we observe a time series $\mathbf{Y} = (Y_1, \ldots, Y_n)$ which we assume is generated by an AR(1) process, i.e.,

This was for m-dependent process, which is a very strong assumption! Under more realistic process, may be even worse.

3.1 Model-based approach

If we assume an AR(1) model for the data, we can consider a method similar to bootstrapping residuals for linear regression.

(1) Estimate à from data (fit the model). (a) before estimated "innovations" $\hat{e}_t = Y_t - \hat{\alpha} Y_{t-1}, t = 2,..., n$ and $\hat{e} = \frac{1}{n-1} \hat{\Sigma} \hat{e}_{\pm}$ (3) Define the residuals as cartered Mnovations $\hat{\mathcal{E}}_{t} = \hat{\mathcal{E}}_{\perp} - \overline{\hat{\mathcal{E}}} \quad \left[E\mathcal{E}_{i} = o \right]$ (4) For r=1,..,R a) Create a bootstrap sample $\hat{\xi}_{0,...,}^{\star}$ $\hat{\xi}_{n}^{\star}$ by randomly sampling n+1 values for the n-1 values $\hat{\mathcal{E}}_{4}$, $t=\lambda_{1-n}$. b) Construct perudo data Y*= (y*, ..., y*) from $y_0^* = \hat{\xi}_0^*, \quad y_t^* = \hat{d} y_{t-1}^* + \hat{\xi}_t^*, \quad t = l_{1-y_1}^*.$ c) define at as the estimate of a from "" (5) Isn of a " is bootstrap estimate of dan of a.

Model-based – the performance of this approach depends on the model being appropriate for the data.

As we know, this may not always be a good assumption.

3.2 Nonparametric approach

To deal with dependence in the data, we will employ a nonparametric *block* bootstrap.

Idea:

resample data in blocks to preserve the dependence structure within the blocks.

3.2.1 Nonoverlapping Blocks (NBB) Carlstein (1986).

Consider splitting $\mathbf{Y} = (Y_1, \ldots, Y_n)$ in b consecutive blocks of length ℓ .

We can then rewrite the data as $\boldsymbol{Y} = (\boldsymbol{B}_1, \dots, \boldsymbol{B}_b)$ with $\boldsymbol{B}_k = (Y_{(k-1)\ell+1}, \dots, Y_{k\ell}), k = 1, \dots, b.$

() Sample nonovelapping blocks B^{*}_{i},..., B^{*}_{b} independently from B_{1,-3}B₁₀ with replacement to form puendo data set Y^{*} = (B^{*}₁,..., B^{*}_b).

(a) estimate statistic of interest from
$$Y^*$$
 to get $\hat{\partial}^*$.
(3) Repeat D-Q R times to obtain $\hat{\partial}^{*(1)}_{,...,\hat{\partial}} \hat{\sigma}^{*(R)}$ to estimate day of $\hat{\partial}$.

Note, the order of data within the blocks must be maintained, but the order of the blocks that are resampled does not matter.

Künsch (1989) 3.2.2 Moving Blocks (MBB) Lin Esingh (1992).

Now consider splitting $\mathbf{Y} = (Y_1, \ldots, Y_n)$ into overlapping blocks of adjacent data points of length ℓ .

Now we have more blocks the choose firm! $(N = n - e + 1 \text{ us. } b = \lfloor \frac{n}{e} \rfloor)$.

We can then write the blocks as $B_k = (Y_k, \ldots, Y_{k+\ell-1}), k = 1, \ldots, n-\ell+1$.

$$\mu^{\mu}(\text{collect brocks} C - (D_{1,..,B_N}) \text{ sempling } B_{1,..,B_0}^* \text{ from } C, b = [\overline{z}], \text{ put together to get } Y^{m} = (B_{1,..,B_n}^*).$$

Alternative but
equivalent formulation but
$$I_{1,m-1} I_{b}$$
 but tid of $P(T_{1}=j) = \frac{1}{N}$, $j = 1,..., N$ of $B_{1}^{k} = B_{T_{1}}^{k}$, $i = 1,..., b$.
 E_{X} : but $\hat{b}_{n} = \overline{Y}_{n}$, but MBB sample mean perform $\overline{Y}_{m}^{k} = \sum_{i=1}^{N} Y_{i}^{k} f_{m}^{k}$, Find $E_{X}(\overline{y}_{m}^{k})$ and $Var_{X}(\overline{y}_{m}^{k})$ which estimate
 $N_{0}te: \overline{Y}_{m}^{k} = \frac{1}{b} \stackrel{b}{\leq} \overline{y}_{T}^{k}$ (sample mean f_{1}^{k}
 $N_{0}te: \overline{Y}_{m}^{k} = \frac{1}{b} \stackrel{b}{\leq} \overline{y}_{T}^{k}$ (sample mean f_{1}^{k}
 $N_{0}te: \overline{Y}_{m}^{k} = \frac{1}{b} \stackrel{b}{\leq} \overline{y}_{T}^{k}$ (\overline{y}_{T}^{k}) $= E_{X}(\overline{y}_{T}^{k})$
 $(\widehat{P} = \sum_{i=1}^{N} \sqrt{y_{T}^{k}}) = \frac{1}{b} \stackrel{b}{\leq} \overline{z}_{i} (\overline{y}_{T}^{k}) = E_{X}(\overline{y}_{T}^{k})$
 $(\widehat{P} = \sum_{i=1}^{N} \sqrt{y_{T}^{k}}) = \frac{1}{b} \stackrel{b}{z}_{i=1}^{k} E_{X}(\overline{y}_{T}^{k}) = E_{X}(\overline{y}_{T}^{k})$
 $(\widehat{P} = \sum_{i=1}^{N} \sqrt{y_{T}^{k}}) = Var_{X}(\overline{y}_{T}^{k}) = E_{X}(\overline{y}_{T}^{k})$
 $(\widehat{P} = \frac{1}{N} \stackrel{b}{z}_{i=1}^{k} \frac{1}{b} \frac{b}{y} = Var_{X}(\overline{y}_{T}^{k})$
 $(\widehat{P} = \frac{1}{N} \stackrel{b}{z}_{i=1}^{k} \frac{b}{b} \frac{b}{i})$
 $(\widehat{P} = \frac{1}{N} \stackrel{b}{z}_{i=1}^{k} \frac{b}{b} \frac{b}{i})$
 $(\widehat{P} = \frac{1}{N} \stackrel{b}{z}_{i=1}^{k} \frac{b}{b} \frac{b}{i})$
 $(\widehat{P} = \frac{1}{N} \stackrel{b}{z}_{i=1}^{k} \frac{b}{b} \frac{b$

This directly estimates the virial of simple mean of legth & block Jey;

NOTE: The MBB recision of $\overline{V_n}(\overline{Y_n} - M) = \overline{V_n}(\overline{Y_n} - \overline{EY_n})$ is NOT $\overline{V_m}(\overline{Y_m} - \overline{Y_n})!$ is actually $\overline{V_m}(\overline{Y_m} - \overline{E_x}\overline{Y_m}) = \overline{V_m}(\overline{Y_m} - \widehat{M}) + \frac{\overline{V_n}}{\overline{V_n}}\overline{\overline{Y_n}}.$ Both NBB and MBB fix the resione issue from page 35.