"cross-validation"

Data driven approach:

1.4 Optimal Binwidth
\n
$$
\frac{11 \text{ cycles} \cdot \text{vability}^{\text{in}}}{\text{Data driven approach:}}
$$
\n
$$
1SE = \int [f(u) - \hat{f}(u)]^2 du
$$
\n
$$
= R(f) + R(\hat{f}) - 2 \int \hat{f}(u) f(u) du
$$
\n
$$
= R(f) + R(\hat{f}) - 2 \int \hat{f}(u) f(u) du
$$
\n
$$
= \int \frac{1}{\text{circle of } u} du
$$
\n
$$
= \int \frac{1}{\text{circle of } u} du
$$
\n
$$
= \int \frac{1}{\text{circle of } u} du
$$
\n
$$
= \int \frac{1}{\text{circle of } u} du
$$
\n
$$
= \int \frac{1}{\text{circle of } u} du
$$
\n
$$
= \int \frac{1}{\text{circle of } u} du
$$
\n
$$
= \int \frac{1}{\text{circle of } u} du
$$
\n
$$
= \int \frac{1}{\text{circle of } u} du
$$
\n
$$
= \int \frac{1}{\text{circle of } u} du
$$
\n
$$
= \int \frac{1}{\text{circle of } u} du
$$
\n
$$
= \int \frac{1}{\text{circle of } u} du
$$
\n
$$
= \int \frac{1}{\text{circle of } u} du
$$
\n
$$
= \int \frac{1}{\text{circle of } u} du
$$
\n
$$
= \int \frac{1}{\text{circle of } u} du
$$
\n
$$
= \int \frac{1}{\text{circle of } u} du
$$
\n
$$
= \int \frac{1}{\text{circle of } u} du
$$
\n
$$
= \int \frac{1}{\text{circle of } u} du
$$
\n
$$
= \int \frac{1}{\text{circle of } u} du
$$
\n
$$
= \int \frac{1}{\text{circle of } u} du
$$
\n
$$
= \int \frac{1}{\text{circle of } u} du
$$
\n
$$
= \int \frac{1}{\text{circle of } u} du
$$
\n
$$
= \int \frac{1}{\text{circle of } u} du
$$
\n
$$
= \int \frac{1}{\text
$$

Why use ISE, not MISE? We still don't know f and tryity To come up \sqrt something we can do. (practical). Does this work? Unfortunately often leads to undersmoothing (high variance).

connect midpoint straight t bines! **Contract Contract Contract**

The histogram is simple, useful and piecewise constant. piecewise constant
 s^{in}

```
For Continuous \mathsf{RV}_{\mathfrak{z}_j} heed somethily smoother.
```


Let b_1, \ldots, b_{K+1} represent bin edges of bins with width h and n_1, \ldots, n_K be the number of observations falling into the bins. Let c_0, \ldots, c_{k+1} be the midpoints of the bin interval.
 $c_j = \frac{(b_j' + b_{j+1})}{\lambda}$ $j = 1, ..., k$

$$
C_{j} = \frac{(b_{j} + b_{j+1})}{2} \quad j = 1, ..., K
$$

$$
C_{0} = b_{1} - \frac{b_{1}}{2}, \quad C_{k+1} = b_{k+1} + \frac{b_{1}}{2}
$$

The frequency polygon is defined as

$$
\hat{f}(x) = \frac{1}{nh^2} \left[h_j c_{j+1} - h_{j+1} c_j + (n_{j+1} - n_j) x \right] + \sigma \quad \text{if } c_j, c_{j+1} \text{ is a constant.}
$$

The frequency polygon is defined as
\n
$$
\frac{1}{2}f(x) = \frac{1}{nh^{2}} \left[h_{j}^{2} C_{j+1} - h_{j+1}^{2} C_{j} + (h_{j+1} - h_{j}^{2}) \sum \right] + \infty \& b \left[C_{j}^{2} C_{j+1} \right]
$$
\n
$$
Hf + \frac{1}{h^{2}} \& abcduteb_{j} \text{ continuous } \& d \quad R(f), R(f^{2}), R(f^{1}) , R(f^{1}) \& b \Rightarrow b \left[C_{j}^{2} C_{j+1} \right]
$$
\n
$$
MISE = \frac{2}{3nh} + \frac{44 \sqrt{9}R(f^{2})}{3.880} + \frac{1}{10}R(h^{2}) + \frac{1}{10}R(h^{2}) + \frac{1}{10}R(h^{2})
$$
\n
$$
a_{j} h_{j}^{4} + \frac{1}{10}a_{j} R(f^{2}) + \frac{1}{10}A(f^{2}) + \frac{1}{10}A(f^{2}) + \frac{1}{10}A(f^{2})
$$
\n
$$
F(f^{2}) = \frac{1}{3nh} + \frac{1}{10} \frac{1}{2880}
$$
\n
$$
m_{j}h_{j}^{2} + \frac{1}{2880} + \frac{1}{2880} + \frac{1}{2880} + \frac{1}{2880} + \frac{1}{2880} + \frac{1}{2880}
$$
\n
$$
m_{j}h_{j}^{2} + \frac{1}{2880} + \
$$

Gaussian rule for binwidth m .
Optimal birvidth for frey .polygon will be asymptotially lager than histogram

Again, we donot know
$$
h(f^q) \Rightarrow
$$
 assume $f = \frac{1}{6}$ augsian and plug in :

$$
h_0 = 2.15 \times h^{-1/6}
$$

Major league bascball salanes from 1986 and 1987.

Let's go back to local error for ^a histogram for ^a moment :

Figure back to local errors from 1986 or d.1987.

\ngo back to local error for a huitogram for a moment:

\n
$$
MSE(\hat{f}(x)) = Var(\hat{f}(x)) + Bias(\hat{f}(x))^{2}
$$
\n
$$
= \frac{f(x)}{nh} + \frac{f'(x)^{2}}{4} [h - 2(x - b_{1})]^{2} + O(h^{-1}) + o(h^{2}).
$$
\nIf we want to minimize the 1^{34} km (variance), bhuink should be larger in regions v/hyb density.

\nbmwidth should be inreal, relatively related to $1^{2}(x)$ for x and x is equal to the interval x .

⁼ ahistogram / locally varying bin width could be more accurate to fixed width.

In practice, a simple way to construct locally varying binwidth histograms is by transforming the data to a different scale and then smoothing the transformed data. The final estimate is formed by simply transforming the constructed bin edges $\{b_j\}$ back to the o In practice,
transforming
final estimat
original scal riginal scale. how about $\hat{f}(x)$? No, just bin locations. ing binwidth histograms is by
a smoothing the transformed dat
 $\overline{\text{e}}$ constructed bin edges $\{b_j\}$ bad

Recall the definition of a density function

where $F(x)$

 took this and approximate of small fixedh using the ecdf. =-Ely) histogram m

What if instead, we replace $F(x+h)-F(x-h)$? with ecof

$$
F(x) \text{ is the cdf of the random variable } Y. \qquad \frac{h \rightarrow 0}{\text{fixed } h \text{ using the cdf.}} \qquad \frac{h \rightarrow 0}{\text{fixed } h \text{ using the cdf.}} \qquad \frac{h \rightarrow 0}{\text{fixed } h \text{ using the cdf.}} \qquad \frac{h \rightarrow 0}{\text{fixed } h \text{ using the cdf.}} \qquad \frac{h \rightarrow 0}{\text{fixed } h \text{ using the cdf.}} \qquad \frac{h \rightarrow 0}{\text{fixed } h \text{ using the cdf.}} \qquad \frac{h \rightarrow 0}{\text{first } h \text{ using the cdf.}} \qquad \frac{h \rightarrow 0}{\text{first } h \text{ using the cdf.}} \qquad \frac{h \rightarrow 0}{\text{first } h \text{ using the cdf.}} \qquad \frac{h \rightarrow 0}{\text{first } h \text{ using the cdf.}} \qquad \frac{h \rightarrow 0}{\text{first } h \text{ using the cdf.}} \qquad \frac{h \rightarrow 0}{\text{first } h \text{ using the cdf.}} \qquad \frac{h \rightarrow 0}{\text{first } h \text{ using the cdf.}} \qquad \frac{h \rightarrow 0}{\text{first } h \text{ using the cdf.}} \qquad \frac{h \rightarrow 0}{\text{first } h \text{ using the cdf.}} \qquad \frac{h \rightarrow 0}{\text{first } h \text{ using the cdf.}} \qquad \frac{h \rightarrow 0}{\text{first } h \text{ using the cdf.}} \qquad \frac{h \rightarrow 0}{\text{first } h \text{ using the cdf.}} \qquad \frac{h \rightarrow 0}{\text{first } h \text{ using the cdf.}} \qquad \frac{h \rightarrow 0}{\text{first } h \text{ using the ddf.}} \qquad \frac{h \rightarrow 0}{\text{first } h \text{ using the ddf.}} \qquad \frac{h \rightarrow 0}{\text{first } h \text{ using the ddf.}} \qquad \frac{h \rightarrow 0}{\text{first } h \text{ using the ddf.}} \qquad \frac{h \rightarrow 0}{\text{first } h \text{ using the ddf.}} \qquad \frac{h \rightarrow 0}{\text{first } h \text{ using the ddf.}} \qquad \frac{h \rightarrow 0}{\text{first } h \text{ using the ddf.}} \qquad \frac{h \rightarrow 0}{\text{first } h \text{ using the ddf.}} \qquad \frac{h \rightarrow 0}{\
$$

12 A Kernel function assign weights to the contribution given by each x_i to $\hat{f}(x)$ depending on proximity to x . ssign weights to the contribution?
Let us all points within h of x equals
aible weighting scheme.

This will weight all points within h of x equally. A univariate *kernel density estimator* will allow a more flexible weighting scheme.

 \gg $\frac{2i\pi k}{h}$ = $\frac{2i\pi k}{h}$ in the

Typically, kernel functions are positive everywhere and symmetric about zero.

Examples : Standard Normal Student's t loters also exist).

The bandwidth parameter controls the smoothness of the density estimate. 3 Kernel Density Est

e smoothness of the density estimate. for a given

behand width determines tradenth btw/ bias and variance Kanel .

 L bandwidth determines tradeoff bay bias and variance.

The tradeoff that results from choosing the bandwidth $+$ kernel can be quantified through a measure of accuracy of \hat{f} , such as **MISE**.

For h_1 see obermoothing (lose 2^{nd} mode), F_r small h , undersmoothing , many take mades .