3.1 Choice of Bandwidth

To understand bandwidth selection, let us analyze MISE. Suppose that K is a symmetric, continuous probability density function with mean 0 and variance $0 < \sigma_K^2 < \infty$. Let $R(g) = \int g^2(z) dz$. Recall that

$$\text{MISE} = \int \text{MSE}(\hat{f}(x)) dx = \int \left[\text{Var}(\hat{f}(x)) + \left[\text{has}(\hat{f}(x)) \right]^2 \right] dx$$

Now let $h \to 0$ and $nh \to \infty$ as $n \to \infty$. BIAS: Note $E\{\hat{f}(\pi)\} = \frac{1}{n} \sum_{i=1}^{n} K(\frac{x-u}{n}) f(u) du$ = (K(t) f(zc-ht) dt (change of variable) and using Taylor's expansion, $f(x-ht) = f(x) - ht f'(x) + \frac{h^2 t^2}{2} f'(x) + \sigma(h^2)$. $\Rightarrow E\{\hat{f}(x)\} = H(x) + \frac{h^2 \delta_F^2}{2} f''(x) + o(h^2) \quad \text{because } K \text{ is symmetric about } D.$ So, $\left[\text{bias } \hat{\xi} \hat{f}(x) \right]^2 = \frac{h^4 G_k^4}{h^4} \left[f''(x) \right]^2 + o(h^4).$ $\Rightarrow |SB = \int \left[bias \hat{z}\hat{f}(x)\right]^2 dx = \frac{h^4 G_{\mu}^2}{\mu} R(f') + O(h'),$ Variance: $Var \{\hat{s}(x)\} = \frac{1}{n} Var \{\frac{1}{h} K(\frac{x-x}{n})\}$ $\frac{dualles}{dual k} = \frac{1}{nh} \int K(t)^2 f(x-ht) dt - \frac{1}{n} \left[E \left\{ \frac{1}{h} K\left(\frac{x-x_i}{h} \right) \right\} \right]^2$ $T_{a,y}^{\text{lor's}} = \frac{1}{nh} \int k(t)^2 \left[f(x) + \sigma(1) \right] dt - \frac{1}{n} \left[f(x) + \sigma(1) \right]^2$ $= \frac{1}{nh} \int k(t)^2 \left[f(x) + \sigma(1) \right] dt - \frac{1}{n} \left[f(x) + \sigma(1) \right]^2$ $= \frac{1}{n!} f(x) R(k) + \sigma(\frac{1}{nh}).$ $\Rightarrow IV = \int Var \hat{f}(x) dx = \frac{R(K)}{mh} + O(\frac{1}{mh}).$ and $MISE = \frac{R(K)}{nh} + \frac{h^{4} \sigma_{F}^{2}}{4} R(f') + \sigma(\frac{1}{nh} + h^{4}).$ AMISE

To minimize AMISE with respect to h, seek value of h that avoids excessive bias and variance.

optimal bandwidth
$$h_o = \left(\frac{R(K)}{n \sigma_K^{"} R(s^{o})}\right)^{V_S}$$

 \implies minimal AMISE: AMISE_o = $\frac{5}{4} \left[G_K R(K) \right]^{V_S} R(f^{"})^{V_S} n^{-V/S}$
Recall for histograme, AMISE_o = $\left[\frac{R(f')}{16}\right]^{V_S} n^{-2/3}$
 \downarrow kernel density estimator, getting closer to parametriz of $\frac{1}{n}$.

The term R(f'') measures the roughness of the true underlying density. In general, rougher densities are more difficult to estimate and require smaller bandwidth.

The term $[\sigma_K R(K)]^{4/5}$ is a function of the kernel function K.

We could choose K to minimize $[\sigma_k R(K)]^{4/5}$: If K restricted to be a proper density, minimizer is a scaled version of a quadratic density: $K(u) = \frac{3}{4} (1-u)^2 II(111 \le 1).$

"Epanechnikov Kernel", more Roter.

3.1.1 Cross Validation We want to evaluate quality of \hat{f} as an estimator of f without using dota twice (oreator titing \hat{f} and once for authority). \Rightarrow again use $\hat{f}_{i}(X_{i}) = \frac{1}{h(n-1)} \sum_{j \neq i} K(\frac{X_{i} - X_{j}}{h})$ and let $\hat{\phi}(h)$ be a function of $\hat{f}_{-i}(X_{i})$ that assesses quality if $f_{i}f_{-i}$. If $\hat{\phi} = 15E$, chown h the minimize $R(\hat{f}) - \frac{2}{n} \sum_{i=1}^{n} \hat{f}_{-i}(X_{i})$. f could instead choose $\hat{\phi}(h)$ as as the pseudo-likelihood $PL(h) = \prod_{i=1}^{n} \hat{f}_{-i}(X_{i})$ and choose h the maximize!

Typically, will be undersmoothed => too bumpy.

3.1.2 Plug-in Methods

If the reference density f is Gaussian and a Gaussian kernel K is used,

$$h_0 = 1.059 \ 6 \ n^{-1/5}$$

 $\uparrow_{sample reviewce or IQR}$

this will probably oversmooth.

Empirical estimation of R(f'') may be a better option.

We could use a kernel density estimator for
$$f''$$
:

$$\int_{-1}^{n} f'(x) = \frac{d^2}{dx^2} \begin{cases} \frac{1}{n h_0} \frac{s}{i=1} L\left(\frac{x-x_i}{h_0}\right) \end{cases}$$

$$= \frac{1}{n h_0^3} \frac{s}{i=1} L^{\mu}\left(\frac{x-x_i}{h_0}\right)$$

where ho = bandwidth, L is a sufficiently differentiable kernel to estimate f.

Note: estimating f and f" (or R(f")) vill require diffect bindvidth. If we use ho, L The estimate R(f") and h, K the estimate f, Then AMISE of R(f") is minimized when ho $\propto n^{-1/5}$

 $\Rightarrow \exists \text{ stage solution} : (\text{ sheather - Jenes method}).$ (i) Use baussian plugin rule for ho (the bandwidth used to estimate R(f")). (a) h is calculated using $h = \left(\frac{R(K)}{n \, 6_K^{\prime} \, \hat{R}(f")}\right)^{1/5}$ used to produce the full termal density estimate. (a) $h = \left(\frac{R(K)}{n \, 6_K^{\prime} \, \hat{R}(f")}\right)^{1/5}$ used to produce the full termal density estimate.

3.2 Choice of Kernel

There are two choices we have to make to perform density estimation:

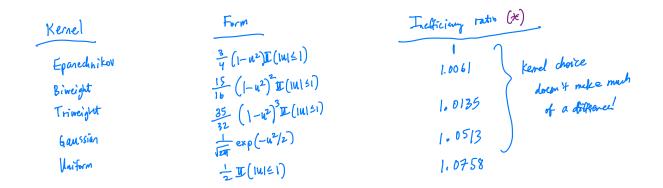
The Kenel and the band width. The shape of the Kenel is much less important.

Recall $AM | SE_o = \frac{5}{7} \left[\delta_k R(k) \right]^{4/5} R(f^{*})^{5} \overline{h}^{4/5}$ 3.2.1 Epanechnikov Kernel

The *Epanechnikov kernel* results from choosing K to minimize $[\sigma_K R(K)]^{4/5}$, restricted to be a symmetric density with finite moments and variance equal to 1

$$\Rightarrow K(u) = \frac{3}{4} (1 - u^{2}) \mathbb{I}(|u| \le 1)$$

and $G_{K} R(k) = \frac{3}{(5\sqrt{5})}$
$$\Rightarrow Pre ratio of \frac{G_{K} R(k)}{3 / (5\sqrt{5})} \Leftrightarrow gives a weasure of relative inefficiency of other kernel.$$



3.2.2 Canonical Kernels

Unfortunately a particular value of h corresponds to a different amount of smoothing depending on which kernel is being used.

Let h_K and h_L denote the bandwidths that minimize AMISE when using symmetric kernel densities K and L. Then,

$$\frac{h_{K}}{h_{L}} = \frac{\left(\frac{R(K)}{G_{K}}\right)^{V_{S}}}{\left(\frac{R(L)}{G_{L}}\right)^{V_{S}}} = \frac{\delta(K)}{\delta(L)}$$

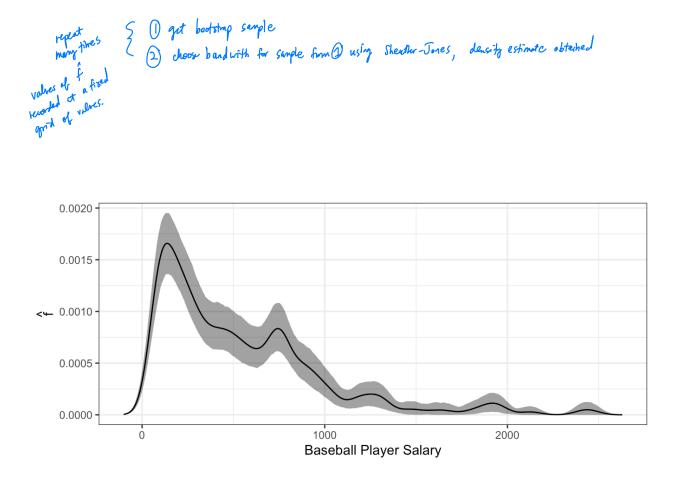
$$\implies he clange from bandwidth h for kenel K the a bandwidth that gives the same arount all simeeting for L jusc bandwidth h $\delta(L)/\delta(K)$.
Eponechnikov: $\delta(K) = \frac{15^{V_{S}}}{(K)}$
Gaussian: $\delta(K) = \frac{(V_{L})^{V_{S}}}{(V_{L})^{V_{S}}}$
Suppose we rescale a kernel shape so that $h = 1$ corresponds to a bandwidth of $\delta(K)$,
The keenel density extinctor can then be written as $\hat{f}(x) = \frac{1}{h} \sum_{i=1}^{n} K_{h\delta(k)} (x-x_{i})$
where $K_{h\delta(K)} = \frac{1}{h\delta(K)} K \left(\frac{z}{h\delta(K)}\right)^{-1}$
 $\int_{1}^{1} C_{k} R_{k} \left(\frac{z}{h\delta(K)}\right)^{-1}$$$

benefit: a single selve of h can be used introchangeably for each canonical kenel without affecting the smoothing.

$$\Rightarrow Frr a (annourial kendle u/ bandwidth h,AMISE(h) = (6K R(K))V/S ($\frac{1}{hh} + \frac{h''R(f'')}{Y}$)
bits/variance tradet$$

So, se Epnechnikon kerel is optimel for any degree of smoothing.

3.3 Bootstrapping and Variability Plot



Note this is NoT a 95% CI just representation of variditity in process of estimating \hat{f} . Is not telling us $P(\hat{f}(x))_{\text{lower}} \in f(x) \leq \hat{f}_{\text{upper}})$, because bizes $\neq 0$.