Density Estimation

Goal: We are interested in estimation of a density function f using observations of random variables Y_1, \ldots, Y_n sampled independently from f .

Parametric Solution:

We will focus on nonparametric approaches to density estimation.

1 Histograms

One familiar density estimator is a histogram. Histograms are produced automatically by most software packages and are used so routinely to visualize densities that we rarely talk about their underlying complexity.

1.1 Motivation

Recall the definition of a density function

$$
f(y)\equiv \frac{d}{dy}F(y)\equiv \lim_{h\rightarrow 0}\frac{F(y+h)-F(y-h)}{2h}=\lim_{h\rightarrow 0}\frac{F(y+h)-F(y)}{h},
$$

where $F(x)$ is the cdf of the random variable Y.

Now, let Y_1, \ldots, Y_n be a random sample of size n from the density f.

A natural finite-sample analog of $f(y)$ is to divide the support of Y into a set of K equisized bins with small width h and replace $F(x)$ with the empirical cdf.

1.2 Bin Width

1.3 Measures of Performance

Squared Error

Mean Squared Error

Integrated Squared Error

Mean Integrated Squared Error

1.4 Optimal Binwidth

We will investigate bias and variance of f pointwise, because . \hat{f} $\mathrm{MSE}(y) = (\mathrm{bias}(\hat{f} \, (y))^2 + \mathrm{Var} \hat{f} \, (y))$

The roughness of the underlying density, as measured by $R(f')$ determines the optimal level of smoothing and the accuracy of the histogram estimate.

We cannot find the optimal binwidth without known the density f itself.

Simple (plug-in) approach: Assume f is a $N(\mu, \sigma^2)$, then

Data driven approach:

2 Frequency Polygon

 $\overline{0}$

The histogram is simple, useful and piecewise constant.

```
library(ISLR)
# optimal h based on normal method
h_0 \leq -3.491 * sd(Hitters$Salary, na.rm = TRUE) *sum(!is.na(Hitters$Salary))^(-1/3)
## original histogram with optimal h
ggplot(Hitters) +
  geom histogram(aes(Salary), binwidth = h 0) -> p
## get values to build freq polygon
vals <- ggplot build(p)$data[[1]]
poly_dat <- data.frame(x = c(\text{vals} x[1] - h_0),
                               vals$x, vals$x[nrow(vals)] + h 0),
                         y = c(0, vals\ y, 0)
## plot freq polygon
p + qeom line(aes(x, y), data = poly_dat, colour = "red")
 80 -60
>4020<sub>1</sub>\overline{0}
```
1000

Salary

2000

Let b_1, \ldots, b_{K+1} represent bin edges of bins with width h and n_1, \ldots, n_K be the number of observations falling into the bins. Let c_0, \ldots, c_{k+1} be the midpoints of the bin interval.

The frequency polygon is defined as

MISE

AMISE

Gaussian rule for binwidth

In practice, a simple way to construct locally varying binwidth histograms is by transforming the data to a different scale and then smoothing the transformed data. The final estimate is formed by simply transforming the constructed bin edges $\{b_j\}$ back to the original scale.

3 Kernel Density Estimation

Recall the definition of a density function

$$
f(y)\equiv \frac{d}{dy}F(y)\equiv \lim_{h\rightarrow 0}\frac{F(y+h)-F(y-h)}{2h}=\lim_{h\rightarrow 0}\frac{F(y+h)-F(y)}{h},
$$

where $F(x)$ is the cdf of the random variable Y.

What if instead, we replace $F(x+h) - F(x-h)$?

This will weight all points within h of x equally. A univariate kernel density estimator will allow a more flexible weighting scheme.

Typically, kernel functions are positive everywhere and symmetric about zero.

3.1 Choice of Bandwidth

The bandwidth parameter controls the smoothness of the density estimate.

The tradeoff that results from choosing the bandwidth $+$ kernel can be quantified through a measure of accuracy of \hat{f} , such as MISE.

To understand bandwidth selection, let us analyze MISE. Suppose that K is a symmetric, continuous probability density function with mean 0 and variance $0 < \sigma_K^2 < \infty$. Let $R(g) = \int g^2(z) dz$. Recall that

$$
\mathrm{MISE} = \int \mathrm{MSE}(\hat{f}\left(x\right))dx =
$$

Now let $h \to 0$ and $nh \to \infty$ as $n \to \infty$.

To minimize AMISE with respect to h ,

The term $R(f'')$ measures the roughness of the true underlying density. In general, rougher densities are more difficult to estimate and require smaller bandwidth.

The term $[\sigma_K R(K)]^{4/5}$ is a function of the kernel function $K.$

3.1.1 Cross Validation

3.1.2 Plug-in Methods

If the reference density f is Gaussian and a Gaussian kernel K is used,

Empirical estimation of $R(f'')$ may be a better option.

3.2 Choice of Kernel

There are two choices we have to make to perform density estimation:

3.2.1 Epanechnikov Kernel

The *Epanechnikov kernel* results from choosing K to minimize $[\sigma_K R(K)]^{4/5}$, restricted to be a symmetric density with finite moments and variance equal to 1

3.2.2 Canonical Kernels

Unfortunately a particular value of h corresponds to a different amount of smoothing depending on which kernel is being used.

Let h_K and h_L denote the bandwidths that minimize AMISE when using symmetric kernel densities K and L . Then,

Suppose we rescale a kernel shape so that $h = 1$ corresponds to a bandwidth of $\delta(K)$,

3.3 Bootstrapping and Variability Plot

