
2.1 Out-of-Bag Error 7

While bagging can improve predictions for many regression methods, it’s particularly
useful for decision trees.

These trees are grown deep and not pruned.

How can bagging be extended to a classi�cation problem?

2.1 Out-of-Bag Error

There is a very straightforward way to estimate the test error of a bagged model.

-

=> each tree has low bins and high variance.

averagingtrees reduces variance by combining hundreds or thousands of trees.

↳ won't lead to overfitting ,

but can be slow.

(averaging no longer an option)

(mostcomment vote : for a test obs.
,

record dass that is predicted by each tree
, predict is classpredicted most oftene

Casually terprobabilities : carrage class probabilities ,
then classify

Key : trees are repeatedly fit to bootstrapped subsets of observation.

- on average each true use 2/3 of the data to fit the tree

i.e. /z of observations are NOT used to fit the free (out-of-bag)·

Idea: We can predict the its
response using all trees in which observation was OOB.

This leads to o B predictions for it observation.

Average of predictions to get a single DOB prediction for it observation
OB

=>We can ge OOB predictions for each training obs to getOBMSE for dessification ene)

which estimates TEST USE
=

valid bic only ever use predictions from trees that didn't use that point in fitting.

8 2 Bagging

2.2 Interpretation

Bagging typically results in improved predictive performance lover a single free) at the
expense of

Interpretabilitya the biggest advantages of tres"

- no longer possible to represent model as a single free

=> no longer know which variables are themostimportant to predict response .

What to do ?

↳ obtain overall summary of importance using RSS (or Gini)

· record total amont RSS (or Gini) is decreased due to splits over a given predictor

averaged over B trees

· large value indicates important predictor.

9

3 Random Forests
Random forests provide an improvement over bagged trees by a small tweak that
decorrelates the trees.

As with bagged trees, we build a number of decision trees on bootstrapped training
samples.

In other words, in building a random forest, at each split in the tree, the algorithm is not
allowed to consider a majority of the predictors.

The main difference between bagging and random forests is the choice of predictor subset
size .

-

But when building the trees
,

a random sample of m predictors is chosen as split candidates

↳ Split only allowed to consider one of the candidates

↳ fresh sample of candidates every split

↳ typically m.

why?

Suppose there is one strong predictor and a number of moderate predictors in the data set.

In the collation of trees
,

most for all) will have the top predictor as the top splitt!

=> all of the bagged trees with look verysimilar

= predictions will be highly correlated.

i
.e ,

bagging -> averaging highly (positively) conelated values does not lead to much variance reduction !

RFs overcome this by forcing each split to consider only a subset of predictors

=> on arrage
M

of splits will not even consider the strong predictor
-> other predictors will have a

chance
.

If M= => random forest = bagging.

Using smalli helps w/ condated predictors.

As with bagging ,
we're not concerned about overfitting / large B.

Can estimate GOB error and examine importance in same way.

10

4 Boosting
The basic idea of boosting is to take a simple (and poorly performing form of) predictor
and by sequentially modifying/perturbing it and re-weighting (or modifying) the training
data set, to creep toward an effective predictor.

Consider a 2-class - loss classi�cation problem. We’ll suppose that output takes values
in . The AdaBoost.M1 algorithm is built on some base classi�er form.

1. Initialize the weights on the training data.

2. Fit a -valued predictor/classi�er to the training data to optimize the - loss.

3. Set new weights on the training data.

4. For ,

5. Output an updated classi�er based on “weighted voting”.

highbirance

u

"slow" learning. ~ Vol, 7)=yyil .

-

f.
This can be almost any classifier

works best with low unience, high bins dassities.

most people usef to be a free v/ 2 terminal modes

("Stubs").

#gorithm(AdaBoost
.
Ml)

Win =n ,

iii)
in

-3 - 1
,
13

I
like

a
stab

(minimize)

let err= ii)

= In

Wiz= exp(4. # (i =FG(i) i= 1
.

- -

,
n

↓ this upweights mis-classified observations by a factor of Fr,

a Fit a l-valued classifier Fm to trainity data to optimizeWin(i + F(i).

b . Let em=Will
C

.

set <m = In (e)
d

. update weights as

Wilmin = Winexp (amIlyi= Emil)) i =-y

Ada Boost can be adapted
for regression problems with a

difrect loss function

= (2) = sign (mm(i) (which leads to different error,

weights,
etc..

classifiers with small erro get big positive weights in the voting.

This works well !

4.1 Why might this work? 11

4.1 Why might this work?

For an arbitrary function of , consider a classi�er built using as a voting function,
e.g. , ignoring the possibility that . Then

Using the following fact,

provided , the - loss error rate for is

In other words, the error rate is bounded above by expected exponential loss. AdaBoost
works by providing a voting function that produces a small value of this bound.

To see this, we need to identify for each a value that optimizes ,
where

An optimal is easily seen to be half the log odds ratio, i.e. the optimizing the upper
bound is

Now consider “base classi�ers” taking values in with parameters
and functions built from them of the form

for training-data-dependent and .

Then, . Thus, successive ’s are perturbations of the
previous ones.

12 4 Boosting

How can we de�ne the perturbations to produce small values of the upper bound of our
error ()?

Well, we don’t have a complete probability model for (if we did, we would be done).
So, let’s optmize an empirical version of this bound.

and let’s call .

We will consider optimal choice of and for purposes of making the best
possible perturbation of in terms of minimizing .

1. Choice of :

Independentof we need to minimize the -weighted error rate of .
Call the optimized version . This is the same as step 4a. in AdaBoost.m1.

2. Choice of :

4.1 Why might this work? 13

and minimization of is equivalent to minimization of

Let

then a bit of calculus shows that the optimizing is

Notice this coef�cient is **exactly from step 4b. and 4c. in AdaBoost.m1 (and
the is irrelevant for the sign).

3. Updating weights :

Note that

Since is constant across , it is irrelevant to weighting, and since the
prescription for produces half what AdaBoost prescribes in 4b. for , the
weights used in the choice of and are exactly as in AdaBoost.
Since corresponds to the �rst AdaBoost step, is of the AdaBoost voting
function and the ’s generate the same classi�er as the AdaBoost algorithm.

So, in conclusion, we have found (a positive multiple of the AdaBoost voting function)
which optimizes an empirical version of , the upper bound on our error
rate!

